Residual annihilations of asymmetric DM

lason Baldes

May 24, Planck 2018, Bonn

Talk based on 1703.00478 - IB, Petraki 1712.07489 - IB, Cirelli, Panci, Petraki, Sala, Taoso.

Small scale structure problems

Small scale structure problems

- Core-Cusp problem: observations favour a cored profile.
- Missing Satellites: failed to observe many subhalos? (but see Kim et. al. [1711.06267]).
- Too-big-to-fail: CDM predicts more massive satellites.
- Diversity Problem. (see Kamada et. al. [1611.02716]).

These problems may well end up being solved by baryonic physics but they may also point towards a non-minimal DM sector.

Constraints on SIDM

- Kaplinghat, Tulin, Yu [1508.03339]

Remarkably the correct velocity dependence can be achieved with a $\sim 1-100~\text{MeV}$ mediator.

SIDM - Spergel, Steinhardt '00. Would severely constrain DM possibilities.

$$R_{\rm scat} = \sigma v_{\rm rel} \rho_{\rm dm} / m \approx 0.1 \ {\rm Gyr}^{-1} \times \left(\frac{\rho_{\rm dm}}{0.1 \ M_{\rm sol}/{\rm pc}^3}\right) \left(\frac{v_{\rm rel}}{50 \ {\rm km/s}}\right) \left(\frac{\sigma / m}{1 \ {\rm cm}^2 / g}\right)_{28}$$

The light mediator can be nicely accommodated in Asymmetric Dark Matter models.

Baryonic Matter Density

$$\Omega_B = \frac{(n_b + n_{\overline{b}})m_p}{\rho_c} \simeq \frac{n_b m_p}{\rho_c} \simeq \frac{n_B m_p}{\rho_c}$$

The symmetric component is efficiently annihilated away resulting in $n_{\overline{b}} = 0$ and $n_b = n_B \equiv n_b - n_{\overline{b}}$.

Observationally $Y_B \equiv n_B/s = (0.86 \pm 0.02) \times 10^{-10}$.

The DM density could be set in a similar way: Asymmetric Dark Matter

$$\Omega_{DM} = rac{(n_{
m dm} + n_{
m dm})m_{
m dm}}{
ho_c} \simeq rac{n_{
m dm}m_{
m dm}}{
ho_c} \simeq rac{n_D m_{
m dm}}{
ho_c}$$

The requires an asymmetry to be created in the DM sector, $n_D \equiv n_{\rm dm} - n_{\overline{\rm dm}}$, and the efficient annihilation of the symmetric component. - Nussinov '85; Gelmini, Hall, Lin '87; Barr '91; Kaplan '92...

DM mass relation

$$M_{
ho_D} = m_{
ho} rac{Y_B}{Y_D} rac{\Omega_{
m DM}}{\Omega_{
m B}} \left(rac{1-r_{\infty}}{1+r_{\infty}}
ight)$$

 $\mathit{r}_{\infty} \equiv (\mathit{Y}_{-}/\mathit{Y}_{+})_{t \rightarrow \infty}$ is the ratio of DM antiparticles to particles today.

Asymmetric Dark Matter - Annihilation

Assume we have asymmetric DM with $n_D \equiv n_d - \bar{n_d}$.

We want to annihilate away the symmetric component of the ADM to lighter states in a D preserving manner.

- Graesser, Shoemaker, Vecchi 1103.2771; Iminniyaz, Drees, Chen 1104.5548 ; IB, Petraki 1703.00478

Possibilities (see March-Russell, Planck 2017)

- $\hbox{O} \mbox{ Direct annihilation to light SM dof. Severely constrained for $$M_{\rm DM} \lesssim 10 \mbox{ GeV. March-Russell, Unwin, West 1203.4854}$$
- ② Annihilation to stable light Dark Sector particles (limits from $N_{\rm eff}$, structure)
- Annihilation to light Dark Sector particles which then decay (limits from direct and indirect detection, colliders, structure)

Here we will be interested in option 3.

Asymmetric Dark Matter - Light Mediator

Light mediator can:

- Provide an annihilation channel for the DM.
- Give sizable self interactions. The symmetric case is severely constrained. - Bringmann et. al. '16, Cirelli et. al. '16
- Solution Give the velocity dependence required by the cluster constraint.
- Will lead to experimental direct and indirect detection signatures once a decay channel to the SM opened
- Leads to Sommerfeld enhancement of indirect detection
 - counteracts suppression of signal due to fewer antiparticles.

Aims of the work:

- Identify areas of parameter space allowed by all constraints which give sizable self interactions.
- Quantitatively explore indirect detection of ADM with Sommerfeld Enhancement.

The model

Dark QED

$$\mathcal{L} = \frac{1}{2} M_V V_\mu V^\mu - \frac{1}{4} F_{D\mu\nu} F_D^{\mu\nu} - \frac{\epsilon}{2c_w} F_{D\mu\nu} F_Y^{\mu\nu} + \bar{p}_D (iD - M_{p_D}) p_D + \bar{e}_D (iD - m_{e_D}) e_D$$

- Dark electrons are required for charge conservation when there is a $p_D \bar{p}_D$ asymmetry.
- Here M_V is typically small compared to M_{p_D} and m_{e_D} .
- The kinetic mixing allows the mediator to decay to SM particles (avoid DM overproduction) → experimental signatures.

The relic abundance

- Smaller r_∞ ≡ (Y₋/Y₊)_{t→∞} requires larger α_D.
- Sommmerfeld Enhacement + Bound State Formation important for large M_{pD} (large α_D).

$$egin{aligned} &\sigma v_{
m rel}(ar{p}_{\scriptscriptstyle D} p_{\scriptscriptstyle D} o VV) = rac{\pi lpha_{\scriptscriptstyle D}^2}{M_{p_D}^2} imes S_{
m ann} \ &\sigma v_{
m rel}(ar{p}_{\scriptscriptstyle D} p_{\scriptscriptstyle D} o ar{e}_{\scriptscriptstyle D} e_{\scriptscriptstyle D}) = rac{\pi lpha_{\scriptscriptstyle D}^2}{M_{p_D}^2} imes S_{
m ann} \ &\sigma_{
m BSF} v_{
m rel} = rac{\pi lpha_{\scriptscriptstyle D}^2}{M_{p_D}^2} imes S_{
m BSF} \end{aligned}$$

$$\Gamma(\uparrow\downarrow \to VV) = \frac{\alpha_D^5 M_{P_D}}{2}$$

$$\Gamma(\uparrow\uparrow \to \bar{e}_D e_D) = \frac{\alpha_D^5 M_{P_D}}{6}$$

$$\Gamma(\uparrow\uparrow \to VVV) = \frac{2(\pi^2 - 9)\alpha_D^6 M_{P_D}}{9\pi}$$
11/2

Dark Photon Constraints

- Cirelli, Panci, Petraki, Sala, Taoso [1612.07295]

Indirect detection Constraints

Effective cross section

$$\sigma_{\mathrm{\tiny ID}} \, v_{\mathrm{rel}} \equiv rac{n_\infty^+ n_\infty^-}{(n_\infty^+ + n_\infty^-)^2} \sigma_{\mathrm{inel}} \, v_{\mathrm{rel}} = rac{4r_\infty}{(1+r_\infty)^2} \, \sigma_{\mathrm{inel}} \, v_{\mathrm{rel}} \, .$$

$$\tau_{V} \times \left(M_{p_{D}}/M_{V}\right) \simeq 0.26 \text{ pc} \times \left(\frac{1}{\sum_{f} q_{f}^{2}}\right) \left(\frac{10^{-10}}{\epsilon}\right)^{2} \left(\frac{M_{p_{D}}}{\text{TeV}}\right) \left(\frac{\text{MeV}}{M_{V}}\right)^{2}$$

Indirect detection Constraints

Constraints

- CMB: Planck constraint, taking $f_{\rm eff}$ from T. Slatyer.
- AMS: limits from antiproton spectrum.
- FERMI Dwarfs: SE regime compensates the γ poor $V \rightarrow$ leptons regime. (Galactic Halo: less severe constraints).
- ANTARES: limits from upward going muon tracks.

CRESST-II, CDMS-lite, LUX

- Taking into account q^2 dependent propagator.
- Somewhat simplified analysis compared to the experimental papers.
- Limit depends on ϵ .

Recent updates from CRESST-III, DarkSide 50, XENON1T and PandaX-2 do not qualitatively change the picture.

Unitarity

Unitarity

$$\sigma_{
m inel}^{(J)} v_{
m rel} \leqslant \sigma_{
m uni}^{(J)} v_{
m rel} = rac{4\pi(2J+1)}{M_{
ho_D}^2 v_{
m rel}}$$

- LHS scales as $1/v_{\rm rel}$ with light mediator.
- Calculation becomes untrustworthy close to unitarity limit.
- Translates into a maximum possible DM mass.
- Depends on r_{∞} . IB, Petraki [1703.00478]

Symmetric DM - $r_{\infty} = 1$

Stable atomic states form below red dashed lines - not treated here.

Aymmetric DM - $r_{\infty} = 10^{-1}$

Stable atomic states form below red dashed lines - not treated here.

Aymmetric DM - $r_{\infty} = 10^{-2}$

Stable atomic states form below red dashed lines - not treated here.

Aymmetric DM - $r_{\infty} = 10^{-3}$

Stable atomic states form below red dashed lines - not treated here.

Aymmetric DM - $r_{\infty} = 10^{-4}$

Stable atomic states form below red dashed lines - not treated here.

Aymmetric DM - $r_{\infty} = 10^{-5}$

Stable atomic states form below red dashed lines - not treated here.

22 | 28

Aymmetric DM - $r_{\infty} = 10^{-6}$

Stable atomic states form below red dashed lines - not treated here.

Aymmetric DM - $r_{\infty} = 10^{-7}$

Stable atomic states form below red dashed lines - not treated here.

Aymmetric DM - $r_{\infty} = 10^{-8}$

Stable atomic states form below red dashed lines - not treated here.

Aymmetric DM - $r_{\infty} = 10^{-9}$

Stable atomic states form below red dashed lines - not treated here.

Future Prospects

- Direct detection: will continue to probe highly asymmetric regime.
- Careful BBN analysis could close light dark photon window.
- Multi-component numerical simulations could be of interest.
- More careful treatment of reannihilation required.
 - Binder et. al. [1712.01246]
- High Energy Cosmic Ray Experiments: please provide flux as a function of *E*.

Conclusions

- SIDM regime still allowed in this model.
- Due to SE: residual annihilations imporant down to $r_{\infty} \sim 10^{-4}$.
- Complementarity with direct detection.
- Such models are multi-component: possible level transition signal (more careful consideration of atomic bound states required).

Thanks.

Dark Photon Constraints from Colliders

Dark Photon Constraints from Colliders

PHYSICAL REVIEW LETTERS 120, 061801 (2018)

Editors' Suggestion

Featured in Physics

Search for Dark Photons Produced in 13 TeV pp Collisions

R. Aaij et al.* (LHCb Collaboration)

(Received 15 December 2017; published 8 February 2018; corrected 26 March 2018)

Searches are performed for both promptlike and long-lived dark photons, A', produced in proton-proton collisions at a center-of-mass energy of 13 TeV, using $A' \rightarrow \mu^+\mu^-$ decays and a data sample corresponding

Momentum transfer cross section

$$\sigma_T \equiv 2\pi \int_{-1}^1 d\cos\theta \ (1 - \cos\theta) \frac{d\sigma}{d\Omega}$$

If we want to address small scale structure problems with SIDM.

$$egin{aligned} \sigma_{T} &= rac{1}{2(n_{\infty}^{ ext{sym}})^2} \left[n_{\infty}^+ n_{\infty}^- \sigma_{ ext{att}} + rac{1}{2} (n_{\infty}^+ n_{\infty}^+ + n_{\infty}^- n_{\infty}^-) \sigma_{ ext{rep}}
ight] \ &= rac{2}{(1+r_{\infty})^2} \left[r_{\infty} \sigma_{ ext{att}} + rac{1}{2} (1+r_{\infty}^2) \sigma_{ ext{rep}}
ight] \end{aligned}$$

The self interactions become purely repulsive as the DM becomes more asymmetric.

Fixed α_D

Instead fix α_{D} .

- DM antiparticle population now depends on M_{p_D} .
- Maximum possible M_{pD} corresponds to symmetric DM.
- Above this M_{p_D} : too much DM.
- Below this M_{p_D} : Asymmetry Y_D to compensate underabundance and r_{∞} rapidly becomes suppressed.

Here I include only LUX and CMB constraints. Due to the SE the CMB constraint is still relevant for large M_{p_D} .

Here I include only LUX and CMB constraints. Due to the SE the CMB constraint is still relevant for large M_{p_D} .

Here I include only LUX and CMB constraints. Due to the SE the CMB constraint is still relevant for large M_{p_D} .