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Small scale structure problems
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Small scale structure problems

@ Core-Cusp problem: observations favour a cored profile.

@ Missing Satellites: failed to observe many subhalos? (but see Kim et. al.
[1711.06267]).

@ Too-big-to-fail: CDM predicts more massive satellites.

o Diversity Problem. (see Kamada et. al. [1611.02716]).

v

These problems may well end up being solved by baryonic physics but they
may also point towards a non-minimal DM sector.



Constraints on SIDM
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- Kaplinghat, Tulin, Yu [1508.03339]

Remarkably the correct velocity dependence can be achieved with a
~ 1 —100 MeV mediator.

SIDM - Spergel, Steinhardt '00. Would severely constrain DM possibilities.
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Asymmetric Dark Matter

The light mediator can be nicely accommodated in
Asymmetric Dark Matter models. J




Asymmetric Dark Matter Density

Baryonic Matter Density

Qp — (np+ r@)mp ~ npmp ~ ngmp
Pc Pc Pc

The symmetric component is efficiently annihilated away resulting in
ng=0and n, = ng = np — ny,.

Observationally Yg = ng/s = (0.86 4 0.02) x 10~1°.



Asymmetric Dark Matter Density

The DM density could be set in a similar way: Asymmetric Dark

Matter

(Pdm + Ng)Mdm  MdmMdm "D Mdm
Qpm = ~ -~

Pc Pc Pc

The requires an asymmetry to be created in the DM sector,
np = Ngm — Ngy, and the efficient annihilation of the symmetric
component. - Nussinov '85; Gelmini, Hall, Lin '87; Barr '91; Kaplan '92...

DM mass relation
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foo = (Y-/Y4)t—00 is the ratio of DM antiparticles to particles today.



Asymmetric Dark Matter - Annihilation

Assume we have asymmetric DM with np = ny — ngy.

We want to annihilate away the symmetric component of the ADM to
lighter states in a D preserving manner.

- Graesser, Shoemaker, Vecchi 1103.2771; Iminniyaz, Drees, Chen 1104.5548 ; IB,
Petraki 1703.00478
Possibilities (see March-Russell, Planck 2017)

@ Direct annihilation to light SM dof. Severely constrained for
MDM S 10 GeV. - March-Russell, Unwin, West 1203.4854

@ Annihilation to stable light Dark Sector particles (limits from Neg,
structure)

@ Annihilation to light Dark Sector particles which then decay (limits
from direct and indirect detection, colliders, structure)

Here we will be interested in option 3.



Asymmetric Dark Matter - Light Mediator

Light mediator can:

o
2]

Provide an annihilation channel for the DM.

Give sizable self interactions. The symmetric case is severely
constrained. - Bringmann et. al. '16, Cirelli et. al. '16

Give the velocity dependence required by the cluster constraint.

Will lead to experimental direct and indirect detection signatures once
a decay channel to the SM opened

Leads to Sommerfeld enhancement of indirect detection
- counteracts suppression of signal due to fewer antiparticles.




Aims of the work:

Aims of the work:

@ Identify areas of parameter space allowed by all constraints which give
sizable self interactions.

@ Quantitatively explore indirect detection of ADM with Sommerfeld
Enhancement.




The model

Dark QED
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Dark electrons are required for charge conservation when there is a
Pp — Pp asymmetry.

Here My is typically small compared to M,, and me,.

The kinetic mixing allows the mediator to decay to SM particles
(avoid DM overproduction) — experimental signatures.
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The relic abundance
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@ Smaller ro = (Y-/Y4)t—oo requires
larger ap.

@ Sommmerfeld Enhacement + Bound
State Formation important for large
M,y (large ap).
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Dark Photon Constraints
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- Cirelli, Panci, Petraki, Sala, Taoso [1612.07295]

12/28



Indirect detection Constraints
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Indirect detection Constraints

@ CMB: Planck constraint, taking f.g from T. Slatyer.

@ AMS: limits from antiproton spectrum.

o FERMI Dwarfs: SE regime compensates the v poor V — leptons
regime. (Galactic Halo: less severe constraints).

@ ANTARES: limits from upward going muon tracks.
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Direct Detection

Direct Detection

CRESST-Il, CDMS-lite, LUX

e Taking into account g® dependent propagator.
@ Somewhat simplified analysis compared to the experimental papers.

@ Limit depends on e.

v

Recent updates from CRESST-III, DarkSide 50, XENON1T and PandaX-2
do not qualitatively change the picture.
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Unitarity

) ) _ 4r(2J +1)
Oinel Vrel X O i Vrel = W

LHS scales as 1/v;e with light mediator.

Calculation becomes untrustworthy close to unitarity limit.
Translates into a maximum possible DM mass.

Depends on ry. - IB, Petraki [1703.00478] y




Symmetric D
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Aymmetric
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Aymmetric
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Aymmetric
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Aymmetric
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Future Prospects

Future Prospects

@ Direct detection: will continue to probe highly asymmetric regime.

o Careful BBN analysis could close light dark photon window.
@ Multi-component numerical simulations could be of interest.
o

More careful treatment of reannihilation required.
- Binder et. al. [1712.01246]

High Energy Cosmic Ray Experiments: please provide flux as a
function of E.

27 /28



Conclusions

Conclusions

@ SIDM regime still allowed in this model.

o Due to SE: residual annihilations imporant down to ry, ~ 1074,
o Complementarity with direct detection.

@ Such models are multi-component: possible level transition signal
(more careful consideration of atomic bound states required).

Thanks.
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Dark Photon Constraints from Colliders
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- J. Alexander et. al [1608.08632]



Dark Photon Constraints from Colliders

PHYSICAL REVIEW LETTERS 120, 061801 (2018)
[Feaured in Physics ]

Search for Dark Photons Produced in 13 TeV pp Collisions

R. Aaij et al.”
(LHCb Collaboration)

® (Received 15 December 2017; published 8 February 2018; corrected 26 March 2018)
Searches are performed for both promptlike and long-lived dark photons, A’, produced in proton-proton

collisions at a center-of-mass energy of 13 TeV, using A’ — p*p~ decays and a data sample corresponding

90% CL exclusion regions on [m(A’),£?]
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Self Interactions

Momentum transfer cross section
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If we want to address small scale structure problems with SIDM.
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The self interactions become purely repulsive as the DM becomes more
asymmetric.



Insufficient DM Annihilation
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Instead fix ap.

@ DM antiparticle population now depends on M, .

@ Maximum possible M, corresponds to symmetric DM.
@ Above this M,,: too much DM.
o

Below this M,,: Asymmetry Yp to compensate underabundance and
I~ rapidly becomes suppressed.




Fixed o, = 0.001
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Here | include only LUX and CMB constraints.
Due to the SE the CMB constraint is still relevant for large Mp,,.
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