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Why 3 generation?




N
The Deceased SM4

Inclusion of an additional fermion generation to the SM is constrained by several
observables. sce review by Lenz
e Slayers:

@ Electroweak precision observables are affected via loop processes.

@ Flavor observables.

@ Direct searches for the production of the heavy fermions at the LHC and at
Tevatron.

@ Higgs production and decay are affected via loop processes.
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e Salvation:
@ Mass splitting in the fourth family.
@ Considerable CKM mixing with three generations can accommodate both
Flavor and EWPO.
@ Stringent limits from direct searches pushes to non-perturbative regime.

However, the results rely on specific decay patterns and thus the mass bounds
can be relaxed.
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e Slayers:
@ Electroweak precision observables are affected via loop processes.
@ Flavor observables.
@ Direct searches for the production of the heavy fermions at the LHC and at
Tevatron.
@ Higgs production and decay are affected via loop processes.
e Salvation:
@ Mass splitting in the fourth family.
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However, the results rely on specific decay patterns and thus the mass bounds
can be relaxed.

No Savior from Higgs data.
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Latest Higgs Data

CMS Combination CMS-PAS-HIG-17-031
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Latest Higgs Data

Production and Decay Modes CMS-PAS-HIG-17-031
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Latest Higgs Data

ATLAS Comb.: Higgs Couplings AmAs-conF2o17-047

* Results also interpreted in terms of Higgs couplings using the
leading order inspired “k-framework” model

+ 2D regions found for K, vs. K., and K, vs. K,

> Assuming no BSM contributions to total width
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4G effect in Higgs Production and Decay

e For a 125 GeV Higgs, the production cross section through gg fusion

enhances by factor of 9.
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e —
New direction

@ Coupling modification factor, K = Agon/Aezhsn-
@ In the SM, kv = ky = kg = 1. ’d’ denotes down-type quark and charged
leptons.
@ The modification factor for the gg — h production cross section
2
kiFypa(m) + 20 kpFuya(Ty)
_t/ b/

Ryy = (1)
gg ’F1/2 Tt)|2

@ For chiral fermions much heavier than m; = 125 GeV, the loop function, F}/;
saturates to a constant value and the new physics (NP) contribution simply
becomes proportional to (ks + kp). Clearly, in the SM-like limit
(ke = Ky = 1), Rgg = 9.

@ Include extra charged lepton for anomaly cancellation that contribute to
h —~yyand h — Zv .

@ The NP contribution to the h — v amplitude, in the heavy mass limit

Ryy = Z Q?’ch"@f 2

F=t/ b7

Nf =3 for quarks and 1 for leptons. 8/15
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New direction

@ Sign of top Yukawa coupling is precisely measured but the sign of bottom
Yukawa is hard to predict.

@ The current LHC data allows a wrong-sign limit as Ky = ky = —kq = 1.

@ In the wrong-sign limit, enhancement in the ggF channel can be controlled.

@ Note that the additional 4G charged leptons makes K+, = 0 in this limit.

@ Even for Zv amplitude,

2
Kzy = > QiT{Nln; (3)
f=t b
T3f is the isospin projection, vanishes in the same limit.

@ Therefore, in the wrong-sign limit, the chiral fermion generation remain
perfectly hidden from the Higgs data leaving no trace of extra generation.
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Realizing the Wrong-sign limit

e Not possible to acquire in the SM with one Higgs doublet = Problem
with unitarity.

@ A second Higgs doublet can ameliorate.
o Possible BSM = Type—H 2HDM. rerreira ot a1 1410.1926

Recent study in the context of low energy SUSY
N. M. Coyle, B. Li and C. E. M. Wagner — 1802.09122 .

10/ 15



Type-I11 2HDM

@ One Higgs doublet couples to the up-type quark and neutral leptons while the
other higgs doublet to down type quark and charged leptons
o The Higgs Potential
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Wrong-sign limit in Type-I1 2HDM

o The Higgs coupling modification factors are

v = sm(f-a), (V=W,2)
Ky = sin(f—a)+cotBcos(8—a), (for up type quarks)
kg = sin(f —a)—tanfBcos(f —«a), (for down type quarks and charge

@ The Wrong-sign limit reaches at

cos(f —a) =

tan 3’

o If one demands k, = —kq4 only,

with, tan g > 2

cos(f — o) =sin2p.

which is the same as above for large tan S.
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The undying 4G chiral fermions

Charged scalar mass has to be > 500 GeV from b — sv.

Additional scalars and fermions contribute to oblique parameters and one
should verify AT = (0.08 +0.12), AS = 0.05 + 0.10.

Recent direct search bound mg > 700GeV depending on decay channel.
For a benchmark point,

my = 550 GeV , my = 510 GeV, m,» = 400 GeV , m,, = 200 GeV ,
mpg = 400 GeV, ma = 810 GeV, mpy4 = 600 GeV .
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Conclusion

@ The 4G chiral fermions are severely disfavored from Higgs data in the SM.

o We invoke the Wrong-sign limit to cancel the additional fermion
contribution in Higgs production.

The limit can only be achieved with an additional Higgs doublet.

@ We show that such limit can be realized in a Type-II 2HDM in
accordance with electroweak precision constraints.

Lower bound on tan (.
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T parameter

The scalar contribution to T parameter [Branco et al.” 2011]
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The fermion contribution to T-parameter [Dighe et al.” 2012]
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S parameter
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