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The cosmic cake



Inflation in scalar-tensor theory

Let’s start with the action

S =

∫
d4x
√
−g

[
M2

p

2
F (φJ)R − 1

2
(∂φJ)2 − VJ(φJ)

]
, (1)

where φJ and VJ are Jordan frame (JF) field and potential
respectively and F is a function, which defines the non-minimal
coupling to gravity. For the Einstein frame

gEµν = Fgµν . (2)

Then, one obtains the EF action of the form of

S =

∫
d4x
√
−gE

[
1

2
RE −

1

2
(∂φE )2 − VE (φE )

]
, (3)

where VE = VJ/F
2



Inflation in scalar-tensor theory

Usually one assumes that during inflation F � 1, which means,
that gravity is effectively weaker than in the GR case. This
happens for instance for

F = 1 + ξφn
J (4)

Then one just needs to assume that for the big values of F one
finds VJ ∝ F 2 in order to obtain a flat plateau in the Einsten
frame. This works for e.g.

V = λφ2n
J (5)

These are the so-called ξ attractors, which also contain the Higgs
inflation.



Hill-climbing inflation

What if F � 1 during inflation? What if gravity gets stronger?
Let’s consider

VJ =
1

2
m2φ2Je

−φJ/MV F = 1− e−φJ/MF , (6)

where MV , m and MF have a dimension of mass.
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Hill-climbing inflation

In the φJ � MF ,MV limit one finds

F ' φJ

MF

(
1− 1

2

φJ

MF

)
, VJ '

1

2
m2φ2J

(
1− φJ

MV

)
, (7)

which gives the following EF potential

VE '
1

2
m2M2

F

(
1− MF −MV

MFMV
φJ

)
. (8)

We obtain a plateau in the EF! The field must increase its value.
Otherwise φJ would first of all evolve towards F = 0, which is the
strong coupling limit of the theory. Thus, we require

MF ≥ MV . (9)



Hill-climbing inflation
The EF field is equal to

φE = ±
∫

dφJ

√
1

F
+

3

2
M2

p

(
F,φJ

F

)2

, (10)

In a small field limit one finds

φE ' −
√

3

2
log F ⇒ φJ ' MF e

−
√

2/3φE , (11)

which gives

VE (φE ) ' 1

2
m2M2

F

(
1− MF −MV

MV
e−
√

2/3φE

)
, (12)

which is a Starobinsky-like model. Note that the case of MV = MF

also gives inflationary solution. Then the Eq. (8) takes form of

VE '
1

2
m2M2

F

(
1− 1

12

(
φJ

MF

)2
)

=
1

2
m2M2

F

(
1− 1

12
e−2
√

2/3φE

)
.

(13)



Primordial inhomogeneities
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Figure: Results for MV = 10−3 and MF ∈ [MV , 100MV ].



Post-inflationary evolution

After inflation one enters the big field limit, where φJ � MF ,MV .
Then one finds

ε→
M2

p

2M2
V

, η →
M2

p

M2
V

, (14)

where ε and η are slow-roll parameters. This means that for
MV ,MF � Mp one finds

ε, η � 1 (15)

After inflation the field rolls very quickly at the steep slope of the
potential, its kinetic energy dominates the potential one and the
field enters the kinaton regime, for which

1

2
φ̇2E � VE ⇒ p ' ρ ⇒ w ' 1 (16)



Reheating of the Universe
ρr ∝ a−4 ∝ e−4Ht , so the radiation is exponentially suppressed
during inflation. Therefore, besides the warm inflationary models
the Universe at the end of inflation is extremely cold and empty.

We need to fill it with Standard Model particles and Dark Matter!

The inflaton field couples to scalars, fermions and vectors and
produces lots of relativistic degrees of freedom - this is the
reheating of the Universe! Problems?

N? ' 67−log

(
k?

a0H0

)
+

1

4
log

(
V 2

hor

M4
pρend

)
+

1− 3w

12(1 + w)
log

(
ρth

ρend

)
(17)

I What is the reheating temperature? (Affects predictions of
inflation)

I How couplings to other fields influence the flatness of the
potential?
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Gravitational particle production
Nearby the end of inflation we can divide the evolution of space
into 3 periods

a(η)2 ∝


1
η2

de Sitter

a0 + a1η + a2η
2 + a3η

3 transition

b0(b1 + η)
4

3w+1 general w 6= −1/3

(18)

where w = p/ρ. From continuity equations we find ai and bi

coefficients.

You change the background → you move the vacuum
→ you produce particles [Ford 1986, Kunumitsu, Yokoyama 2014].
This can be calculated via Bogoljubov transformation.

ρr ∼ N(1− 6ξ)2(1 + w)2 × 10−2H4
inf a

−4 (19)

where Hinfl is a Hubble parameter during inflation, ξ is a ξφ2R
coefficient and N is a number of produced species

H4
inf � H2

inf in Planck units, so it’s a very inefficient process, the
radiation is still subdominant after the particle production



Gravitational particle production
Nearby the end of inflation we can divide the evolution of space
into 3 periods

a(η)2 ∝


1
η2

de Sitter

a0 + a1η + a2η
2 + a3η

3 transition

b0(b1 + η)
4

3w+1 general w 6= −1/3

(18)

where w = p/ρ. From continuity equations we find ai and bi

coefficients. You change the background → you move the vacuum
→ you produce particles [Ford 1986, Kunumitsu, Yokoyama 2014].
This can be calculated via Bogoljubov transformation.

ρr ∼ N(1− 6ξ)2(1 + w)2 × 10−2H4
inf a

−4 (19)

where Hinfl is a Hubble parameter during inflation, ξ is a ξφ2R
coefficient and N is a number of produced species

H4
inf � H2

inf in Planck units, so it’s a very inefficient process, the
radiation is still subdominant after the particle production



Gravitational particle production
Nearby the end of inflation we can divide the evolution of space
into 3 periods

a(η)2 ∝


1
η2

de Sitter

a0 + a1η + a2η
2 + a3η

3 transition

b0(b1 + η)
4

3w+1 general w 6= −1/3

(18)

where w = p/ρ. From continuity equations we find ai and bi

coefficients. You change the background → you move the vacuum
→ you produce particles [Ford 1986, Kunumitsu, Yokoyama 2014].
This can be calculated via Bogoljubov transformation.

ρr ∼ N(1− 6ξ)2(1 + w)2 × 10−2H4
inf a

−4 (19)

where Hinfl is a Hubble parameter during inflation, ξ is a ξφ2R
coefficient and N is a number of produced species

H4
inf � H2

inf in Planck units, so it’s a very inefficient process, the
radiation is still subdominant after the particle production



Gravitational reheating as the only one needed

At the end of inflation the inflaton still dominates the Universe.
Let’s assume that the inflaton is dark (i.e. it is not coupled to any
SM fields) and let’s see how to obtain radiation domination era.

We need an inflaton, which redshifts faster than radiation! A good
example is the massless scalar field, for which w = 1 and ρ ∝ a−6.
Two options

I Fast-rolling inflaton with a steep potential. For a sufficiently
steep post-inflationary potential the inflaton’s kinetic energy
dominates over the potential one, which effectively leads to
w = 1 (our case!)

I Inflation is driven by a non-canonical form of the inflatons
kinetic term (the so-called K -inflation or G -inflation), for
instance

L = K1(φ)X + K2(φ)X 2 , where X =
1

2
gµν∂µφ∂νφ (20)
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Fixing the pivot scale freeze-out

It appears that N? is Hinf independent! The uncertainty on N? is
so small!

N? ' 64.82 +
1

4
ln

(
128π2

Neff(1 + w)2

)
. (21)



Gravitational Waves signal

For Neff � 1 you can get a powerful signal from dark inflation!
This can happen, if ξ ' 1/6



Summary

I Hill-climbing inflation - possible, easy to obtain, consistent
with the data

I Reheating via the gravitational particle production - not very
efficient, but possible

I Dark inflation sets N? very precisely comparing to normal one

I Gravitational waves signal to observe in the future for non
minimal coupling to gravity with ξ ∼ 1/6
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