Pendulum Leptogenesis

Neil D. Barrie

Kavli IPMU (WPI)

May 23, 2018

K. Bamba, NDB, A. Sugamoto, T. Takeuchi and K. Yamashita, arxiv:1610.03268, and arxiv:1805.04826.

Outline

- 2 The Mechanism and Dynamics
- 3 Calculating the Generated η
- 4 Conclusion and Future Work

Matter-Antimatter Asymmetry

The asymmetry is described quantitatively by,

$$\eta = \frac{n_b - n_{\bar{b}}}{s} \simeq 8.5 \times 10^{-11}$$

The Sakharov Conditions

- Baryon number violation
- $\textcircled{O} \ \mathcal{C} \ \text{and} \ \mathcal{CP} \ \text{violation}$
- Period of non-equilibrium

Starobinsky Inflation and Reheating

Inflation solves horizon and flatness problems, and primordial perturbations

Reheating in the Starobinsky model $(\frac{3\mu^2 \overline{M}_{Pl}^2}{4}(1-e^{-\sqrt{2/3}\Phi/\overline{M}_{Pl}})^2)$:

• Inflationary potential approaches $\frac{1}{2}\mu^2\Phi^2$ during reheating.

• An approximate matter dominated epoch ($a \propto t^{2/3}$).

Ratchet Mechanism

Inspired by molecular motors in biological systems, and their ability to generate directed motion.

- Consider an inflaton and complex scalar carrying *L* charge during reheating.
- A derivative coupling between a complex scalar and inflaton.
- Directed motion in the complex scalar phase gives a non-zero *L* number density.

The Model

Interplay between the inflaton and complex scalar during reheating.

$$S = \int dx^4 \sqrt{-g} \left[g^{\mu\nu} \partial_\mu \phi \partial_
u \phi^* - V_0(\phi, \phi^*)
ight.
onumber \ + rac{1}{2} g^{\mu
u} \partial_\mu \Phi \partial_
u \Phi - U(\Phi) + rac{i}{\Lambda} g^{\mu
u} \left(\phi^* \overleftrightarrow{\partial_\mu} \phi
ight) \partial_
u \Phi
ight],$$

where $V_0(\phi, \phi^*) = \lambda \phi^* \phi(\phi - \phi^*)(\phi^* - \phi) + \dots$

Satisfying the Sakharov Conditions

- The complex scalar potential.
- ② Derivative coupling interaction.

8 Reheating epoch.

U(1) Global Symmetry and L Charge

- Identify the U(1) symmetry with L charge, where ϕ has charge 2.
- L preserving interactions, $\mathcal{L}_{int} = g_L \phi^* \bar{\nu}_R^c \nu_R + y_H H \bar{L} \nu_R + h.c.$

• Taking
$$\phi$$
 in polar form, $\ \phi = rac{1}{\sqrt{2}} \phi_{ extsf{r}} e^{i heta}$,

$$V(\phi_r,\theta) = \lambda \phi_r^4 \sin^2 \theta + \cdots$$

and

$$n_L = j^0 = -2\phi_r^2 \left(\dot{\theta} - \frac{\dot{\Phi}}{\Lambda}\right) \;.$$

A non-zero n_L requires driven motion in $\dot{\theta}$.

Behaviour of the Inflaton

Equation of Motion,

$$\ddot{\Phi} + \left(\frac{2}{t}\dot{\Phi} + \Gamma\dot{\Phi}\right) + \mu^{2}\Phi + \frac{\lambda\phi_{r}^{4}}{\Lambda}\sin(2\theta) = 0$$

Need the inflaton (Torque) to be unaffected by θ , $(\mu^2 \Phi \gg \lambda \phi_r^4/\Lambda)$,

$$\ddot{\Phi} + \left(\frac{2}{t} + \Gamma\right)\dot{\Phi} + \mu^2\Phi = 0.$$

When $\Gamma \ll \mu$, the approximate solution to this equation is

$$rac{\Phi(t)}{\Phi_i} pprox \left(rac{t_i}{t}
ight) \cos[\mu(t-t_i)]$$
 .

Behaviour of θ

Utilising the inflaton EoM, and neglecting Φ decay term,

$$\ddot{ heta} + (\Gamma_{ heta} + 3H) \dot{ heta} + p \sin(2 heta) = -q(t) \cos[\mu(t-t_i)] ,$$

where

$$p = \lambda \phi_r^2$$
, $q(t) = \frac{\mu^2 \Phi_i}{\Lambda} \left(\frac{t_i}{t} \right)$.

This is analogous to a forced pendulum where

- LHS represents acceleration, damping, and gravitation,
- RHS is a sinusoidal driving torque with amplitude q and frequency μ .

Possible Cases: $p \ll q(t)$

Consider a large torque $(p \ll q(t))$,

$$\ddot{ heta} + 3H\dot{ heta} = rac{1}{t^2}rac{d}{dt}\left(t^2\dot{ heta}
ight) = -q(t)\cos[\mu(t-t_i)] \;,$$

which gives,

$$\dot{ heta}(t) = rac{\dot{\Phi}}{\Lambda} \quad \Rightarrow \quad j_0 = 0$$

• L violation has vanished, $\dot{ heta}$ oscillates around zero with $\dot{\Phi}$.

• Analogous to an effectively massless pendulum.

Possible Cases: $p \gg q(t)$

Consider a small torque $(p \gg q(t))$,

$$\ddot{\theta} + 3H\dot{\theta} + p\sin(2\theta) = 0$$

Friction term damps $\dot{\theta}$ until θ settles into a minima \Rightarrow no persistent non-zero $\dot{\theta}$.

- C and CP breaking term ignored.
- Analogous to a very massive pendulum, unaffected by input torque.

Sweet Spot Condition and Driven Motion

We need $p \simeq q(t) \Rightarrow L$, \mathcal{C} and \mathcal{CP} violating terms all contribute.

SSC:
$$\lambda \phi_r^2 \simeq \frac{\mu^2 \Phi_i}{\Lambda} \frac{H_d}{H_i}$$

• Equivalent to $F_d \simeq mgl$,

• Torque is time dependent so can only satisfy for a finite time.

Thus we want to consider,

$$\ddot{ heta} + (\Gamma_{ heta} + 3H_d)\dot{ heta} + p\sin(2 heta) = -q(t_d)\cos[\mu(t-t_i)]$$
.

Phase Locked States

- Solutions increasing monotonously in time with small amplitude modulations.
- Known as "phase-locked states" in the study of forced pendulum.
- Swinging of pendulum matches frequency of torque.

Reparameterise the EoM,

$$\ddot{\Theta} + \frac{1}{Q}\dot{\Theta} + \sin\Theta = \gamma \cos(\omega \tau) ,$$

where, $\gamma \equiv \frac{q(t_d)}{p}$.

Solution and L Number Density

The generic phase-locked state solution,

$$\Theta(\tau) = \Theta_0 + n\omega\tau - \sum_{m=1}^{\infty} \alpha_m \sin(m\omega\tau - \phi_m)$$
.

Can find the associated L number density,

$$n_L = \left(\mu \phi_r^2\right) n.$$

where n/2 = number of rotations θ per oscillation of Φ .

Assuming no additional entropy production,

$$\eta^{\rm reh} = \frac{n_L}{s} \approx 0.04n \times \left(\frac{\mu \phi_r^2}{T_{\rm reh}^3}\right) \left(\frac{a_d}{a_{rh}}\right)^3$$

Estimation of *n*

Reparametrising using $\tau = \mu t$ and $\xi = 2\theta \frac{\mu^2}{2\lambda \phi_r^2}$,

$$\xi'' + \sin\left(\frac{2\lambda\phi_r^2}{\mu^2}\xi\right) + \cos(\tau) = 0$$
,

Assume that directed motion is present and of the form $\xi \propto \tau +$

$$\xi = a + b\tau + \frac{\sin(n\tau)}{n^2} + \cos(\tau) ,$$

Consistent with our initial assumptions,

$$n\simeq rac{2\lambda\phi_r^2}{\mu^2}\;,$$

which agrees well with numerical calculations.

Dynamics of θ and Parameter Constraints

- SSC violated $\Rightarrow \phi$ can't produce a non-zero *n*,
- Can approximate the amplitude of oscillations as,

$$\sin 2\theta \approx \frac{H}{H_d} \; ,$$

• After the SSC is violated no simultaneous violation of C, CP and L.

Parameter constraints (e.g. Φ is unaffected by θ),

 $10^{15}~{\rm GeV} > \phi_r > \mu$,

$$1 > \lambda > 5 \times 10^{-4}$$
,

310 > n > 1 .

Estimation of the Generated Asymmetry

Generated asymmetry,

$$\eta^{\rm reh} = \frac{n_L}{s} \approx 0.08 \left(\frac{\lambda \phi_r^4}{\mu T_{\rm reh}^3}\right) \left(\frac{a_d}{a_{rh}}\right)^3$$

where the dilution factor is given by,

$$\left(\frac{a_d}{a_{rh}}\right)^3 = \left(\frac{\pi^2 g_*}{90}\right) \left(\frac{T_{rh}^4}{H_d^2 M_p^2}\right)$$

Using the SSC, $H_d=rac{\lambda\phi_r^2H_0\Lambda}{\mu^2\Phi_0}\simeq 2n imes 10^{10}$ GeV,

$$\frac{\eta}{\eta_{obs}} = \frac{T_{rh}}{2\lambda \cdot 10^8 \text{ GeV}}$$

Neutrino Mass and Seesaw Mechanism

From the L preserving interaction, generate a Majorana mass, $m_{\nu_R} = \frac{g_L \phi_r}{\sqrt{2}}$,

$$10^{14} {\rm ~GeV} > m_{\nu_R} > 10^{11} {\rm ~GeV}$$
 .

Via the seesaw mechanism, the mass of the active neutrinos is given by,

$$m_\nu = \frac{y_H^2 v_h^2}{2m_{\nu_R}} \; ,$$

Decay will occur rapidly, well before the electroweak phase transition suppresses the sphalerons,

$$\Gamma_{\nu_R} = \frac{m_{\nu_L} m_{\nu_R}^2}{4\pi v_h^2} \simeq 10^5 \left(\frac{m_{\nu_R}}{10^{11} \text{ GeV}} \right)$$

Conclusion and Future Work

- Interplay between inflaton and scalar baryon/lepton during reheating,
- Driven motion can be modelled as a forced pendulum,
- Presence of phase-locked states,
- Asymmetry linearly dependent on the reheating temperature.
- Seesaw mechanism generates active neutrino masses.

Future work

- Investigation of efficiency required.
- Other cosmological implications