SO(3) family symmetry, the axion and the flavor puzzle

Mario Reig

arXiv: 1706.03116; MR, C.A.Vaquera-Araujo, J.W.F. Valle, F. Wilczek arXiv: 1805.08048; MR, J.W.F. Valle, F. Wilczek

Planck 2018, Bonn

SOME OPEN QUESTIONS...

• Family structure & flavor puzzle

Neutrino mass

 Λ

Strong CP-problem

$$\mathcal{L} = \frac{g^2 \theta}{16\pi^2} \epsilon^{\alpha\beta\gamma\delta} G^a_{\alpha\beta} G^a_{\gamma\delta}$$

• Nature of Dark Matter

What about the family replication? **Comprehensive Unification**

See: arXiv: 1706.03116

FAMILY UNIFICATION USING SPINORS

Spinors ARE the answer to family replication

(Gell-Mann, Ramond, Slansky, 1980; Wilczek & Zee, 1982)

$$SO(18) \to SO(10) \times SO(8)$$

256 \to (**16**, **8**) $+$ (**16**, **8**')

• Hypercolor hypothesis: some SO(8) subgroup confines ALL but the observed SM families.

 $SO(18) \rightarrow SO(10) \times SO(3)_F \times SO(5)_{HC}$ 256 \rightarrow (16, 3, 1) + (16, 1, 5) + ($\overline{16}, 2, 4$)

COMPREHENSIVE UNIFICATION

(MR, Vaquera, Valle, Wilczek; 2017)

- SO(18) in 5-dimensional space-time.
- Orbifold symmetry breaking: $SO(18) \rightarrow SO(10) \times SO(8)$ $\mathbf{256} \rightarrow (\mathbf{16}, \mathbf{8})^{++} + (\overline{\mathbf{16}}, \mathbf{8'})^{-+}$
- Higgs mechanism:

$$SO(10) \times SO(8) \to SO(10) \times SO(5)_{HC}$$
$$(16, 8)^{++} + (\overline{16}, 8')^{-+} \to 3 \times (16, 1)^{++} + (16, 5)^{++} + 2 \times (\overline{16}, 4)^{-+}$$

Mirror families are decoupled: they become heavy KK modes Extra families are confined by SO(5)_{HC} (now asymptotically free)

Bottom-up approach: SO(3)_F family symmetry and axions

See: arXiv: 1805.08048

Understanding flavor using symmetries

- Fermion masses and mixings are explained using four different mechanisms: (Fritzsch and Xing, 99')
 - Texture zeros
 - Family symmetries
 - Radiative mechanisms
 - Seesaw mechanisms
- From the theoretical point of view all this mechanisms rely on symmetry (and its breaking!) arguments.
- A huge number of possibilities arise to describe 3 families...

A₄, S₃, T₇, U(1)_{FN}, Δ(27), SO(3), SU(3), ...

SO(3) as THE family symmetry

SO(3) comes from Comprehensive Unification through the SSB:

$$SO(18) \rightarrow SO(10) \times SO(3)_F \times SO(5)_{HC}$$

256 \rightarrow (16, 3, 1) + (16, 1, 5) + ($\overline{16}, 2, 4$)

 As a bottom-up approach we propose a theory based in the gauge group

 $SU(3)_C \times SU(2)_L \times U(1)_Y \times SO(3)_F$

The Model

	q_L	u_R	d_R	l_L	e_R	ν_R	5^{u}	5^d	3^{u}	3^d	σ	ρ
$SU(3)_c$	3	3	3	1	1	1	1	1	1	1	1	1
$SU(2)_L$	2	1	1	2	1	1	2	2	2	2	1	1
$U(1)_{Y}$	$\frac{1}{6}$	$\frac{2}{3}$	$-\frac{1}{3}$	$-\frac{1}{2}$	-1	0	$-\frac{1}{2}$	$\frac{1}{2}$	$-\frac{1}{2}$	$\frac{1}{2}$	0	0
$SO(3)_F$	3	3	3	3	3	3	5	5	3	3	5	1
$U(1)_{PQ}$	1	-1	-1	1	-1	-1	2	2	2	2	2	2

- Fermions come in triplets.
- A duplicated Higgs, up and down-type, sector is introduced.
- An SM singlet, σ , breaks SO(3) and PQ at high E.

Mass hierarchies

- Let fermions be in SO(3) triplets, f~3. (F. Wilczek, A. Zee, 1979)
- Because of product rules, 3x3=1+3+5, we can use a singlet, triplet or five-plet scalar to generate fermion masses.
- 3 and 5 are particularly interesting:

$$M \sim \bar{f}_i (\epsilon^{ijk} \langle \mathbf{3}_j \rangle + \langle \mathbf{5}_{ik} \rangle) f_k, \quad \langle \mathbf{3} \rangle = \begin{pmatrix} b & 0 & 0 & 0 \\ 0 & 0 & a & 0 \\ 0 & 0 & a & \end{pmatrix}$$
$$M = \begin{pmatrix} 0 & 0 & 0 \\ 0 & -a & b \\ 0 & -b & a \end{pmatrix} \rightarrow m_1 = 0, m_2 = a - b, m_3 = a + b$$

 $\langle h \rangle \langle 0 \rangle 0$

 \cap

In this context the 1st generation fermions are massless and the CKM is the identity

Emergence of the CKM matrix

 To generate 1st generation fermion mass and CKM we take perturbations around the minimum.

$$\langle \tilde{\mathbf{5}} \rangle = \begin{pmatrix} 0 & 0 & 0 \\ 0 & -a & \epsilon_1 \\ 0 & \epsilon_1 & a \end{pmatrix}, \quad \langle \tilde{\mathbf{3}} \rangle = \begin{pmatrix} b \\ 0 \\ \epsilon_2 \end{pmatrix}$$

• Perturbations change the mass matrix: $\tilde{M} = \left(\begin{array}{c} \tilde{M} \\ \tilde{M} \end{array} \right)$

 m_{t}

 m_h

• Generate 1st gen. Mass & quark mixing:

$$m_1 \sim \frac{\epsilon_2^2}{m_2}$$
 $\sin \theta_C \approx \sqrt{\frac{m_d}{m_s}} - \sqrt{\frac{m_u}{m_c}}, \quad V_{cb} \approx \frac{\epsilon_1^u}{2a^u} - \frac{\epsilon_1^d}{2a^d},$
v-like formula for 1st generation $V_{ub} \approx \frac{\sqrt{m_d m_s}}{2a^u} - \frac{\sqrt{m_u m_c}}{2a^d},$

<u>Seesaw-like formula for 1st generation</u> <u>Mixing angles as function of q masses</u>

Duplicated Higgs sector: mass relations and the axion

A relation between down-type quarks and charged leptons appear due • to SO(3) symmetry.

(also F. Wilczek, A. Zee, 1979)

The relation with up-type quarks is avoided thanks to the duplicated ullet**Higgs sector.**

In the absence of vector-like quarks, the $U(1)_{PO}$ can only be anomalous • if there is a duplicated Higgs sector:

$$[SU(3)_C]^2 \times U(1)_{PQ} \neq 0 \leftrightarrow \exists H_u \& H_d$$

Non-trivial flavor-axion connection

PQ breaking: DM & seesaw

• The QCD axion is a good Dark Matter candidate with

$$\Omega h^2 \approx 0.18 \, \theta_i^2 \left(\frac{f_a}{10^{12} \mathrm{GeV}} \right),$$

- Misalignment angle, θ_i, of order O(0.1-1) makes the PQ scale, f_a to coincide with the seesaw scale: 10¹²-10¹⁵ GeV.
- Recall that right handed neutrino mass, PQ & SO(3) breaking are related:

$$\sigma \sim (\mathbf{1}, \mathbf{1}, 0, \mathbf{5}), \ \mathcal{L}_M = y_M \bar{\nu}_R^c \sigma \nu_R,$$

• A connexion between axion-neutrino mass emerges

(Also present in SMASH; Ballesteros et al.)

$$m_a \sim (\Lambda_{QCD} m_\pi / v^2) m_\nu$$

CONCLUSIONS

• SO(18) Comprehensive Unification is an attractive framework for gauge and family unification.

 SO(3)_F turns out to be a very compelling and predictive symmetry to describe flavor.

 Interesting flavor-axion-neutrino connection appears in the SO(3)_F theory.

CONCLUSIONS

• SO(18) Comprehensive Unification is an attractive framework for gauge and family unification.

 SO(3)_F turns out to be a very compelling and predictive symmetry to describe flavor.

 Interesting flavor-axion-neutrino connection appears in the SO(3)_F theory.

THANK YOU!!

Back-up slides

SO(10) unification

• SO(10) group unifies ALL SM interactions (Georgi & Glashow, 1974; Minkowski, Fritzsch, 1974)

 $SO(10) \rightarrow SU(3)_C \times SU(2)_L \times U(1)_Y$

• SO(10) spinors unify EACH family

$$\begin{aligned} \mathbf{16} \to & (\mathbf{3}, \mathbf{2}, 1/6) + (\mathbf{1}, \mathbf{2}, -1/2) + (\bar{\mathbf{3}}, \mathbf{1}, 1/3) \\ & + (\bar{\mathbf{3}}, \mathbf{1}, -2/3) + (\mathbf{1}, \mathbf{1}, 1) + (\mathbf{1}, \mathbf{1}, 0) \end{aligned}$$

• Right handed neutrino is predicted: SEESAW MECHANISM! (Yanagida, 1979; Glashow, 1980; Schechter & Valle, 1980)

$$m_{\nu} \sim \frac{v^2}{M_R}$$

SPINORS ARE THE ANSWER

$$SO(2N) \to SO(2n) \times SO(2m) \to SO(2n)$$

 $\mathbf{2}^{N-1} \to (\mathbf{2}^{n-1}, \mathbf{2}^{m-1}) + (\bar{\mathbf{2}}^{n-1}, \bar{\mathbf{2}}^{m-1}) \to 2^{m-1} \times \mathbf{2}^{n-1} + 2^{m-1} \times \bar{\mathbf{2}}^{n-1}$

- While tensor representations DO NOT decompose repetitively, spinors DO DECOMPOSE repetitively.
- We can use this to reproduce the family structure!

EARLY ATTEMPTS WERE NOT SUCCESSFUL...

- The presence of anti-families does not allow the hypercolor hypothesis. (F. Wilczek, A. Zee; 1982)
- It is impossible to remove anti-families using Higgs mechanism: each family come with its mirror family (anti-family). (J. Bagger, S. Dimopoulos; 1982)
- Conclusion: it seems not possible to unify the observed SM families using a SO(18) spinor.

CHIRALITY, THE ORIGIN OF THE PROBLEM

• The SO(18) spinor, **256**, is L-H. After SSB (**16,8**) is L-H BUT (**16,8**') is **RIGHT-HANDED** (Lorentz sense).

• **Chirality** is a propert of spinors that can be defined only in **EVEN** dimensions.

ORBIFOLD SYMMETRY BREAKING

- SO(18) in 5-dimensional space-time.
- Compactify the 5th dimension on an orbifold $S^1/(Z_2\times Z_2')$. (Y. Kawamura, 1999)
- Non-trivial boundary conditions (BC) for fields.

$$\Phi(x,y) \sim P^{\Phi}\Phi(x,-y)$$

- Only fields with Neumann BC have zero modes (massless 4D fields).
- Useful to address chirality!

Orbifold dimension

RGE in RS space

$$b_i^{RS} = \frac{1}{3} \left[-C_2(G)(11I^{1,0}(\Lambda) - \frac{1}{2}I^{1,i}(\Lambda)) + 2I^{1/2,0}(\Lambda)T_f(R) + I^{2,0}(\Lambda)T_s(R) \right].$$

$$I^{1,0} = 1.024,$$

 $I^{1,i} = 0.147,$
 $I^{1/2,0} = 1.009,$
 $I^{2,0} = 1.005.$

HYPERCOLOR CONFINEMENT

- Mirror families are decoupled: unique framework to implement the Hypercolor hypothesis
- Break: $SO(10) \times SO(8) \rightarrow SO(10) \times SO(5)$ $(16, 8) \rightarrow 3 \times (16, 1) + (16, 5)$
- Unlike original proposals, with only (16,8) the SO(5) hypercolor interaction (green) is asymptotically free!
- The (16,5) are confined and we only observe 3 families at low energy!

Baryon vs Hyperbaryon

- Baryons are composed by 3 quarks due to QCD confinement.
- Proton mass $m_p = 0,938$ GeV.
- Hyperbaryons are composed by 5 hyperquarks due to hypercolor confinement.
- Lightest hyperbaryon around 10 TeV (aprox. 10000 m_p).
- **Highly stable** individually; but small contribution to energy density of universe:

$$\Omega_{\chi}h^2 \approx 10^{-5} \Big(M/TeV\Big)^2$$

Quantum gravity and flavor symmetries

- The absence of interaction terms forbidden by symmetry does not distinguish between global and local symmetries.
- In order to avoid problems with quantum gravity effects such as wormhole tunneling or black-hole evaporation, global symmetries should be gauged. (L.M. Krauss, F. Wilczek, 1989)
- The apparent HUGE number of possibilities to understand flavor using symmetries is reduced to a small number of continuous symmetries.
- Concerning family symmetries, only SU(3) and SO(3) appear as good candidates to describe 3 chiral families. (F. Wilczek, A. Zee, 1979)

CP violation in the quark sector

- CP violation observables are proportional to the Jarlskog invariant, *J.*
- CP violation arises from perturbations around minimum

$$\mathcal{J} = \frac{|V_{us}||V_{ud}||V_{ub}||V_{cb}||V_{tb}|}{(1 - |V_{ub}|^2)} \sin \delta_{CKM}$$

$$\theta_C \approx \sqrt{\frac{m_d}{m_s}} - \sqrt{\frac{m_u}{m_c}} \qquad \qquad |V_{ub}| \approx \frac{\sqrt{m_d m_s}}{m_b} - \frac{\sqrt{m_u m_c}}{m_t}$$
$$|V_{cb}| = \frac{\epsilon_1^u}{2k^u} - \frac{\epsilon_1^d}{2k^d}$$

The Model

	q_L	u_R	d_R	l_L	e_R	ν_R	5^{u}	5^d	3^{u}	3^d	σ	ρ
$SU(3)_c$	3	3	3	1	1	1	1	1	1	1	1	1
$SU(2)_L$	2	1	1	2	1	1	2	2	2	2	1	1
$U(1)_{Y}$	$\frac{1}{6}$	$\frac{2}{3}$	$-\frac{1}{3}$	$-\frac{1}{2}$	-1	0	$-\frac{1}{2}$	$\frac{1}{2}$	$-\frac{1}{2}$	$\frac{1}{2}$	0	0
$SO(3)_F$	3	3	3	3	3	3	5	5	3	3	5	1
$U(1)_{PQ}$	1	-1	-1	1	-1	-1	2	2	2	2	2	2

- Fermions come in triplets.
- A duplicated Higgs, up and down-type, sector is introduced.
- An SM singlet, σ , breaks SO(3) and PQ at high E.

Flavor symmetries and unification

- Constraints to flavor symmetries arise if we require compatibility with unification.
- Family SU(3) symmetry is quantumly inconsistent with minimal content of GUTs.
- Example: SO(10)xSU(3) with fermions in the (16,3) representation suffers the triangle [SU(3)]³ anomaly.

Flavor protection

- Pseudo-Goldstone bosons or axions coupled to flavor lead to strong constraints, mainly coming from $k^+\to\pi^+a$.
- This constraints the PQ breaking scale to be $f_a \ge 4 \times 10^{11} \text{GeV}$

(Celis, Fuentes-Martin, Serodio, 2014; Calibbi, Goertz, Redigolo, Ziegler, Zupan 2016).

- Our model ensures universal PQ charges for all families thanks to the SO(3) symmetry.
- SO(3) gauge familons contribute to $K^0 \bar{K}^0$ and $k^+ \to \pi^+ l^- l^+$ however, this processes are suppressed by f_a^2 . This constraints the PQ scale to be $f_a \ge 4 \times 10^7 \text{GeV}$ safely within the limits.