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Naturalness

• Particle Physics has a love affair with 
Naturalness 

• Naturalness : IR physics should not depend 
sensitively on small variations of UV 
parameters



Naturalness

• Expectation : Naturalness requires 
additional light degrees of freedom to 
cancel quadratic divergence
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Naturalness

• Traditional solution - Introduce top partners 
to cancel the quadratic divergence  

• SUSY, Composite Higgs, Twin Higgs, Little Higgs, …
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Naturalness

• Non Traditional Solutions 
• Multiverse, Relaxion, NNaturalness, … 

1. Brute force statistics to get a vacua/copy 
with the correct Higgs mass 

2. Story to explain how we got there



Naturalness

• Traditionalish solution - Use Higgs partners + 
moduli to cancel the quadratic divergence 

• Like Traditional solutions 
• Some particles have partners 

• Like Non-Traditional solutions 
• Partners are not responsible for cancelling the quadratic 

divergence



Naturalness

• Imagine that the Higgs mass is controlled by 
a scalar (moduli) vev 

• 2 Higgs doublet model, MSSM, Twin Higgs, Multiverse, Relaxion, 
NNaturalness, … 

• What if the minimum of the moduli is such that 
any large mass the Higgs might have is 
naturally cancelled by the moduli vev? 



Naturalness

• Very difficult to realize a situation where this 
occurs 

• If moduli only controls the Higgs mass, then 
Higgs mass of zero is always a maximum
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Naturalness

• Way around this involves Higgs partners + a 
discrete symmetry! 

• Unfortunately, not enough time to describe details about how 
discrete symmetries can be used to solve the general hierarchy 
problem 

• Thus obtain a solution that centers around 
Higgs partners and NOT top partners!



A theory of moduli

• Starting point is a ZN symmetry 

• N copies of the Higgs exchanged under 
symmetry

Hi ! Hi+1

• N=3 (4) to solve the Little Hierarchy 
problem



ZN Symmetry

• Moduli is a periodic scalar

• Shift symmetry broken by a spurion down 
to a periodic scalar
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ZN Symmetry

• Theory has a ZN symmetry which is non-
linearly realized on the scalar
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1 Introduction

In this article, we describe a new mechanism for obtaining a scalar that is parametrically
lighter than the UV cutoff of the theory. This mechanism involves a discrete ZN symmetry
that is non-linearly realized on a scalar as a shift symmetry and manifests as an exchange
symmetry on the N copies of particles it interacts with 1. This approach allows one to
obtain a hierarchy between the mass of the scalar and the UV cutoff that is exponential in
N.

We first consider an explicit example of a Yukawa coupling between a scalar and a
fermion. The starting point is a periodic scalar � with period 2⇡f . � has a spurion ✏ which
breaks the arbitrary shift symmetry �! �+↵ down to �! �+2⇡f . Thus � only appears
in the Lagrangian as

✏ sin

✓
�

f
+ ✓

◆
(1.1)

The theory also has a discrete ZN under which � transforms as

�! �+

2⇡f

N
(1.2)

We introduce Weyl fermions  i and  c
i for � to couple to. Under the ZN symmetry, the

fermions transform as

 j , 
c
j !  j+1, 

c
j+1 (1.3)

1Due to the presence of additional discrete symmetries, the ZN symmetry will typically be enhanced
into a DN symmetry.
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A theory of moduli

• Most general Lagrangian consistent with 
symmetries + spurions

4

FIG. 1: The N = 3 tree-level potential when ✏2 = 1.3m2
H .

The solid line is the potential with no UV contribution, while
the dotted (dashed) line includes the UV generated potential
with ✓ = 0 (✓ = ⇡) in Eq. 24. If the UV-generated potential
has a minimum where the Higgs masses are all negative, then
all Higgs masses are at their large natural value. If the UV-
generated potential has a minimum where one of the Higgs
masses is positive, then there is a light Higgs.

transitions. As a phase transition occurs when the Higgs
mass crosses zero, these scalars should be able to favor a
small Higgs mass.

Following this train of thought, in this subsection we
develop a theory for the modulus of the Higgs mass.
A modulus coupling to N = 3 or 4 copies of the SM
can result in one of the Higgs bosons being lighter than
what naturalness would otherwise imply by a factor of
10, thereby solving the Little Hierarchy Problem.

1. N = 3/N = 4 case

Consider a ZN symmetry under which there are N
copies of the SM and a scalar �, which is the modulus of
the Higgs mass 2. For the rest of this section, N will be
3 or 4. We couple � to the Higgs with a shift symmetry-
breaking parameter ✏2:

V =
X

k

m2

H,k(�)HkH
†
k + �(HkH

†
k)

2, (23)

m2

H,k(�) = �m2

H + ✏2 cos
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N
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.

For simplicity, we will take all cross-quartic couplings
between the Higgses to be zero, but our results will not
depend on this assumption. We will take m2

H > 0 and
⇤2 > ✏2 & m2

H = 3y2t⇤
2/8⇡2. As discussed before, the

2 In principle, SU(3)c⇥U(1)Y could transform trivially under this
exchange symmetry, but the resulting light colored and charged
particles have been excluded by experiment.

UV contribution to the � potential will be suppressed by
✏2N/⇤2N�4.
The Higgs naturally has a phase transition when its

mass changes sign. Thus the potential for � will be sen-
sitive to changes in the sign of the Higgs mass. To see
this e↵ect explicitly, we integrate out the Higgs classi-
cally. Only if the total Higgs mass is negative will the
Higgs induce a non-zero tree-level potential for �. The
tree-level potential for � is
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⇤2N�4
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By previous arguments, if all three Higgs masses are neg-
ative 3, then the contribution to the potential from the
Higgs is � independent. However, as soon as some of the
Higgs masses become positive, a phase transition occurs
and there is a potential for �.
An example N = 3 potential is shown in Fig. 1 for

some specific choices of parameters. The preference for
small Higgs masses can be seen by considering the Higgs’s
contribution to the potential of �. Over some of param-
eter space, all three Higgs vevs are negative and � does
not acquire a potential from the Higgses. However, when-
ever one of the Higgs masses becomes positive, there is no
longer a cancelation and the potential quickly increases.
Thus this contribution to the potential has a minimum
whenever all of the Higgs masses are negative. This pref-
erence for negative Higgs masses is balanced against the
✏-suppressed UV contribution to the potential. Choos-
ing the phase of the UV contribution to favor positive
Higgs masses gives a theory where at the minimum of
the potential, one of the sectors has a Higgs with a small
positive mass.
When N & 3, the UV contribution becomes subdomi-

nant to the 1-loop potential for �. The 1-loop Coleman-
Weinberg potential gives a potential for � that is of the
form

V
1-loop

=
�

16⇡2

X

k

⇣
HkH

†
k

⌘
2

logHkH
†
k. (25)

The sign and value of � is determined by the UV beta
function. The N = 4 potential including the 1-loop po-
tential (� = 0.2) is shown in Fig. 2.
The previous two examples of N = 3 and N = 4 gave

a small positive Higgs mass, as opposed to the observed
small negative Higgs mass. There are two simple ways
of obtaining a small negative Higgs mass. The first is
to introduce a small amplitude but high-frequency sine

3 Requiring that all three Higgs masses are negative for certain
values of � and that one of them becomes positive for other
values of � corresponds to the choice that 2m2

H > ✏2 > m2
H .
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transitions. As a phase transition occurs when the Higgs
mass crosses zero, these scalars should be able to favor a
small Higgs mass.
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By previous arguments, if all three Higgs masses are neg-
ative 3, then the contribution to the potential from the
Higgs is � independent. However, as soon as some of the
Higgs masses become positive, a phase transition occurs
and there is a potential for �.
An example N = 3 potential is shown in Fig. 1 for

some specific choices of parameters. The preference for
small Higgs masses can be seen by considering the Higgs’s
contribution to the potential of �. Over some of param-
eter space, all three Higgs vevs are negative and � does
not acquire a potential from the Higgses. However, when-
ever one of the Higgs masses becomes positive, there is no
longer a cancelation and the potential quickly increases.
Thus this contribution to the potential has a minimum
whenever all of the Higgs masses are negative. This pref-
erence for negative Higgs masses is balanced against the
✏-suppressed UV contribution to the potential. Choos-
ing the phase of the UV contribution to favor positive
Higgs masses gives a theory where at the minimum of
the potential, one of the sectors has a Higgs with a small
positive mass.
When N & 3, the UV contribution becomes subdomi-

nant to the 1-loop potential for �. The 1-loop Coleman-
Weinberg potential gives a potential for � that is of the
form
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The sign and value of � is determined by the UV beta
function. The N = 4 potential including the 1-loop po-
tential (� = 0.2) is shown in Fig. 2.
The previous two examples of N = 3 and N = 4 gave

a small positive Higgs mass, as opposed to the observed
small negative Higgs mass. There are two simple ways
of obtaining a small negative Higgs mass. The first is
to introduce a small amplitude but high-frequency sine

3 Requiring that all three Higgs masses are negative for certain
values of � and that one of them becomes positive for other
values of � corresponds to the choice that 2m2

H > ✏2 > m2
H .

• Including cross quartics does not change 
the story



A theory of moduli

• Most general Lagrangian consistent with 
symmetries
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✏2N/⇤2N�4.
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mass changes sign. Thus the potential for � will be sen-
sitive to changes in the sign of the Higgs mass. To see
this e↵ect explicitly, we integrate out the Higgs classi-
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By previous arguments, if all three Higgs masses are neg-
ative 3, then the contribution to the potential from the
Higgs is � independent. However, as soon as some of the
Higgs masses become positive, a phase transition occurs
and there is a potential for �.
An example N = 3 potential is shown in Fig. 1 for

some specific choices of parameters. The preference for
small Higgs masses can be seen by considering the Higgs’s
contribution to the potential of �. Over some of param-
eter space, all three Higgs vevs are negative and � does
not acquire a potential from the Higgses. However, when-
ever one of the Higgs masses becomes positive, there is no
longer a cancelation and the potential quickly increases.
Thus this contribution to the potential has a minimum
whenever all of the Higgs masses are negative. This pref-
erence for negative Higgs masses is balanced against the
✏-suppressed UV contribution to the potential. Choos-
ing the phase of the UV contribution to favor positive
Higgs masses gives a theory where at the minimum of
the potential, one of the sectors has a Higgs with a small
positive mass.
When N & 3, the UV contribution becomes subdomi-

nant to the 1-loop potential for �. The 1-loop Coleman-
Weinberg potential gives a potential for � that is of the
form
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The sign and value of � is determined by the UV beta
function. The N = 4 potential including the 1-loop po-
tential (� = 0.2) is shown in Fig. 2.
The previous two examples of N = 3 and N = 4 gave

a small positive Higgs mass, as opposed to the observed
small negative Higgs mass. There are two simple ways
of obtaining a small negative Higgs mass. The first is
to introduce a small amplitude but high-frequency sine

3 Requiring that all three Higgs masses are negative for certain
values of � and that one of them becomes positive for other
values of � corresponds to the choice that 2m2

H > ✏2 > m2
H .

Couples with a different phase to each Higgs 
(partner) due to non-linear realization



A theory of moduli

• Depending on the value of the moduli, 
Higgs mass can be positive or negative

✏2 � m2
H

• Due to quadratic divergence

m2
H ⇠ ⇤2

16⇡2

• Inclusion of cross quartics does not change  
anything



Tree Level Potential

Bare potential
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Potential from integrating out the Higgs at Tree level



Tree Level Potential
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• Focus on the Higgs mass contribution to the 
potential



Tree Level Potential
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• Focus on the Higgs mass contribution to the 
potential when all Higgs masses are negative
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Tree Level Potential
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Tree Level Potential
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Sums to 0 (equilateral triangle closes in on itself)



Tree Level Potential
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Tree Level Potential
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If all Higgs masses negative, then potential 
independent of moduli!
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Tree Level Potential
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Figure 1. The N = 3 tree-level potential when ✏2 = 1.3m2
H . The solid line is the potential with

no UV contribution, while the dotted (dashed) line includes the UV generated potential with ✓ = 0

(✓ = ⇡) in Eq. 3.7. If the UV-generated potential has a minimum where the Higgs masses are all
negative, then all Higgs masses are at their large natural value. If the UV-generated potential has
a minimum where one of the Higgs masses is positive, then there is a light Higgs.

An example N = 3 potential is shown in Fig. 1 for some specific choices of parameters.
The preference for small Higgs masses can be seen by considering the Higgs’s contribution
to the potential of �. Over some of parameter space, all three Higgs vevs are negative
and � does not acquire a potential from the Higgses. However, whenever one of the Higgs
masses goes positive, there is no longer a cancelation and the potential quickly increases.
Thus this contribution to the potential has a minimum whenever all of the Higgs masses are
negative. This preference for negative Higgs masses is balanced against the ✏ suppressed UV
contribution to the potential. Choosing the phase of the UV contribution to favor positive
Higgs masses gives a theory where at the the minimum of the potential, one of the sectors
has a Higgs with a small positive mass.

When N > 3, the UV contribution becomes subdominant to the 1-loop potential for
�. The N = 4 potential including the 1-loop SM Coleman-Weinberg potential is shown in
Fig. 2. Unlike the previous case where the phase is undetermined, the 1-loop SM Coleman-
Weinberg potential has no such ambiguity. Luckily, the sign of the Coleman Weinberg
potential is such that at the minimum, one of the Higgses is lighter than expected. This
Higgs mass is always positive as the restoring potential only exists for positive Higgs mass.

The previous two examples of N = 3 and N = 4 gave a small positive Higgs mass, as
opposed to the observed small negative Higgs mass. There are two simple ways of obtaining
a small negative Higgs mass. The first is to introduce a small amplitude but high frequency
sine wave potential for �

V = ↵ sin

✓
M�

f
+ �

◆
. (3.8)

This will introduce additional minima, but can result in a small negative Higgs mass in the
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Figure 1. The N = 3 tree-level potential when ✏2 = 1.3m2
H . The solid line is the potential with

no UV contribution, while the dotted (dashed) line includes the UV generated potential with ✓ = 0

(✓ = ⇡) in Eq. 3.7. If the UV-generated potential has a minimum where the Higgs masses are all
negative, then all Higgs masses are at their large natural value. If the UV-generated potential has
a minimum where one of the Higgs masses is positive, then there is a light Higgs.

An example N = 3 potential is shown in Fig. 1 for some specific choices of parameters.
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Higgs masses gives a theory where at the the minimum of the potential, one of the sectors
has a Higgs with a small positive mass.

When N > 3, the UV contribution becomes subdominant to the 1-loop potential for
�. The N = 4 potential including the 1-loop SM Coleman-Weinberg potential is shown in
Fig. 2. Unlike the previous case where the phase is undetermined, the 1-loop SM Coleman-
Weinberg potential has no such ambiguity. Luckily, the sign of the Coleman Weinberg
potential is such that at the minimum, one of the Higgses is lighter than expected. This
Higgs mass is always positive as the restoring potential only exists for positive Higgs mass.

The previous two examples of N = 3 and N = 4 gave a small positive Higgs mass, as
opposed to the observed small negative Higgs mass. There are two simple ways of obtaining
a small negative Higgs mass. The first is to introduce a small amplitude but high frequency
sine wave potential for �
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• Contribution to potential from the Higgs has 
a moduli space 

• If all Higgs masses are negative, then it is a minimum 
regardless of value of the Higgs mass 

• Higgs mass of zero is special! 
• It is at the edge of module space 

• A small Higgs mass at the minimum is 
possible 

• If bare contribution pushes minimum to the edge of moduli 
space

Tree Level Potential



• At tree level, choosing an exponentially 
suppressed bare potential leads to an 
exponentially light Higgs mass 

• The light Higgs mass is always positive! 
• The stabilizing force is only present for positive Higgs masses

Tree Level Potential



• Two ways to get a negative Higgs mass 

• Have a small amplitude high frequency 
contribution to the potential 

• Can shift the absolute minimum from small positive Higgs 
mass to small negative Higgs mass 

• Introduces other minimum

Negative Higgs Mass
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be the true minimum



Negative Higgs Mass

0.0 0.5 1.0 1.5

-17.25

-17.20

-17.15

-17.10

-17.05

ϕ/f

V
(a
rb
.u
ni
ts
) Closest minimum could 

have a negative Higgs 
mass



Negative Higgs Mass

0.0 0.5 1.0 1.5

-17.25

-17.20

-17.15

-17.10

-17.05

ϕ/f

V
(a
rb
.u
ni
ts
)



• Other option is to have 2N copies of the SM 
• New Z2 symmetry 

• Same moduli couples to both Z2 copies 

• Have two identical light positive Higgs 
masses 

• Softly breaking the new Z2 allows one of the 
two light Higgs masses to be negative

Negative Higgs Mass



• To solve Hierarchy problem, need 
additional contributions to the moduli 
potential to be small 

• At 1-loop there is another contribution 

• Thus, only solve Little Hierarchy problem

1-loop Potential



1-loop Potential

• 1 - loop potential cannot be exponentially 
suppressed so that Higgs mass cannot be 
exponentially suppressed 

• Can only solve the Little Hierarchy problem

V
1-loop

⇠
X

k

m4

H,k(�) logm
2

H,k(�)/⇤
2 ⇠ ✏4

N2

sin

✓
N�

f
+ ✓

◆



• Completely independent of other Higgs 
couplings! 

• Any ZN invariant coupling works 

• e.g.  No need for gauge bosons partners 
as gauge couplings are automatically ZN 
invariant

Little Hierarchy Problem



• Example : N = 3 or 4 

• UV cutoff of ~ 10 TeV 

• Natural Value of Higgs mass ~ TeV 

• Light Higgs mass of ~ 100 GeV

Little Hierarchy Problem



• What else needs to be duplicated? 

• Due to W/Z boson mass each Higgs 
charged under its own SU(2) 

• Must duplicate quarks and leptons - 
factor of 10 heavier than their SM 
respective partners 

• Must duplicate SU(3)/U(1) due to 
observational constraints or take a 
Natural SUSY approach

Little Hierarchy Problem



• Cross quartics lead to mixing between 
Higgs 

• Signatures similar to that of Twin Higgs 

• Mixing tends to be smaller than in Twin Higgs 

• No EW symmetry breaking fine-tunings associated with Twin 
Higgs 

• Only necessarily coupled particle is moduli 

• Can be extremely weakly coupled as 
solution is completely independent of f 

• Much like the axion

Pheno



• Parametrically, mass and mixing with Higgs

Moduli

m� ⇠ TeV2/f

✓ ⇠ ✏2

fv
⇠ 10TeV

f
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1504.04855

f & 107 GeV

Beam Dump 

Rare meson decay

Figure 4. Constraints on the relaxion-Higgs mixing sin2 ✓ for relaxions with m� between 5GeV
and 90GeV from LEP and the LHC: 4-fermion final states from Higgs strahlung at LEP (green,
labelled as LEP hZ); Higgs decays to NP with BR(h ! NP)  20% at the LHC (purple, solid) as
well as a projection for BR(h ! NP)  10% (purple, dashed); explicit searches for h ! �� with
final states 4⌧ (dark blue, dotted, m� < 10GeV, Run 3 projection) and 2µ2b (dark blue, dotted,
m� > 25GeV, Run 3 projection). Contours for ⇤

br

= 120GeV (gray, dashed for j = 2; brown,
dashed for j = 1), f = mh and f = 1TeV (black for j = 2, brown for j = 1).

6 Cosmological and astrophysical probes of relaxion-Higgs mixing

As discussed in the previous section, laboratory measurements can probe a significant region

of the relaxion parameter space. However, in the sub-MeV region, before the fifth force

experiments start to gain sensitivity in the sub-eV region, a large portion of the parameter

space is left unconstrained. In this section we show how astrophysical and cosmological

probes can explore part of this region of the parameter space, as shown in figure 5, and

also provide relevant bounds if the relaxion mass is in the MeV-GeV range (also shown in

figure 3). In order to identify the part of the parameter space most relevant for relaxion

models and to gain an understanding of the theory contours in figure 5, we refer the reader

to the discussion at beginning of section 5.

6.1 Cosmological probes

Late relaxion decays can be constrained by a variety of cosmological probes such as light

element abundances, CMB spectral distortions and distortions of the di↵use extragalactic

background light (EBL) spectrum. In this section we first compute the relaxion abundance

– 25 –
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Figure 3.8: Currently excluded parameter space for a light scalar with Yukawa-like couplings.

a previous proton fixed target experiment, is shown. The treatment of the experimental contraints
in order to arrive at these bounds has been identical to the treatment in [232] with the di↵erence
that pseudoscalars2have been considered there. In practice this means that the flavour changing
couplings as well as the branching ratios and total width had to be adapted to the scalar case.

3.2.2 What SHiP can do

The main production mechanism for light scalars with Yukawa-like couplings at SHiP comes from
B-meson and kaon decays. Note that although very light scalars are predominantly produced via
kaon decays due to the larger production cross section of kaons, SHiP is designed such that kaons
will typically be stopped in the target before decaying, so that the fraction of scalars emitted in
the direction of the detector is much smaller. We estimate the fraction of kaons which decay before
absorption and therefore contribute to the production of scalars boosted towards the detector to
be 0.2%.

To estimate the number of scalars produced in kaon and B-meson decays we first estimate the
total number of kaons and B-mesons produced, using NB,K = NPoT�B,K/�pN with �pN the total
cross section for proton nucleon collisions and NPoT = 2 ·1020 the total number of protons on target
for SHiP. We take �pN ⇠ 10 mb and assume �K = 20mb and �B = 3.6nb, such that in total about
8 · 1017 kaons and 7 · 1013 B mesons will be produced.

The number of scalars produced in B-meson decays is then simply given by NS = NB⇥BR(B !
2Pseudoscalars are considered in Chapter 5 where one can also find some more details on the employed procedure.

Comparing Figs. 3.9 and 5.2 we find that the di↵erence in parity has only a subdominant e↵ect.
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Moduli

Stellar Cooling

are too high and the Higgs quartic has the wrong sign. If there is new matter at a low scale
that results in small beta functions, then the UV cutoff could be even higher.

3.2.2 Phenomenology

The phenomenology of this solution to the Little Hierarchy Problem will be discussed in
detail in future work. Here we summarize the salient features.

Preferential reheating of the sector with a light negative Higgs mass is built into the
model as � couples to the SM Higgses through scalar mixing and is exactly the scalar
reheating model described in NNaturalness [7]. Since � is naturally lighter than the lightest
Higgs, its decays preferentially reheat the sector with the lightest Higgs, evading all current
cosmological constraints. Thus if � mediates reheating to the SM, then all cosmological
problems are naturally avoided, though the reheating temperature will be very low.

Another feature of this solution is that the only particle required to interact with the
Higgs is �. Much like the axion solution to the strong CP problem, this mechanism works
for any value of f and a large value of f results in � being very difficult to detect. In this
limit, � shares all of the same benefits and problems as the axion, e.g. care is needed so as
not to overclose the universe but on the flip side � can provide a dark matter candidate.

The details will depend on the particular models, but parametrically m� ⇠ TeV2/f

and the mixing with the Higgs scales as 10TeV/f . � with masses down to 0.1 GeV (f . 10

7

GeV) are excluded by meson decays (see Ref. [8, 9] for a compendium of constraints).
Horizontal branch star cooling constraints scalar couplings to electrons and excludes � in
the range 10

13 GeV & f & 10

10 GeV and fifth force experiments exclude f & 10

17 GeV (see
Ref. [10, 11] for a compendium of constraints). This estimates are very rough and detailed
constraints will be model dependent.

Finally, if there is a non-zero cross quartic coupling between the Higgses, then the
Higgs can mix with the other Higgses. Due to the requirement of vacuum stability and the
relatively small value of the SM quartic coupling, negative cross quartics larger than a few
percent are excluded. Positive cross quartics larger than a few percent are also excluded as
large cross quartics generally push the theory out of the parameter space where all three
Higgses can obtain vevs. As a result, the mixing between the multiple Higgses is suppressed
by ⇡ few ⇥ 10

�3. The resulting exotic collider signatures are very similar to Twin Higgs
models (see e.g. Refs. [12, 13]) only with much smaller production rates. Another difference
is the absence of the v/f tuning needed to make electroweak symmetry breaking work in
Twin Higgs models.

4 Conclusion

To conclude, we briefly compare our new solution to similar solutions to the Hierarchy
Problem, Twin Higgs [14] and Little Higgs [15]. In unitary gauge, both Little Higgs and
Twin Higgs solve the gauge and Yukawa divergences by coupling the Higgs as sin v/f to our
sector and as cos v/f to our partners. The cancelations are then just a Z4 version of the
previous arguments, where two copies have been removed because gauge invariance cancels
the odd powers of v so that the extra two copies are not needed for the cancelation.

– 9 –
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Fifth Force

1205.1776

2

of the degenerate core before helium ignition, and in par-
ticular reveals [12]

gep <
∼

3× 10−13 . (1)

This limit pertains to particles with mφ
<
∼

10 keV so that
their emission is not suppressed by threshold effects.
White-dwarf cooling would be accelerated by φ emis-

sion [13]. Isern and collaborators have found that the
white-dwarf luminosity function fits better with a small
amount of anomalous energy loss that can be interpreted
in terms of φ emission with gep ∼ 2 × 10−13 [14]. The
period decrease of the pulsating white dwarf G117-B15A
also favors some amount of extra cooling [15]. The inter-
pretation in terms of φ emission is of course speculative
and we adopt Eq. (1) as our nominal limit.
For completeness we mention that the scalar electron

coupling can be similarly constrained [10, 16]

ges <
∼

1.3× 10−14 . (2)

This limit is more restrictive because the emission process
does not suffer from electron spin flip.

B. Nucleon coupling

The pseudoscalar nucleon coupling, defined analogous
to the electron coupling, allows for the bremsstrahlung
process N + N → N + N + φ in a collapsed supernova
core. However, the measured neutrino signal of SN 1987A
reveals a signal duration of some 10 s and thus excludes
excessive new energy losses [17]. The emission rate suf-
fers from significant uncertainties related to dense nuclear
matter effects [18] and amounts to an educated dimen-
sional analysis [11]. Assuming equal φ couplings to pro-
tons and neutrons one finds [10]

gNp <
∼

3× 10−10 . (3)

In typical axion models, the interaction with neutrons
can actually vanish.
The scalar interaction is not well constrained by this

method because nucleon velocities are relatively small.
Moreover, if the neutron and proton couplings are equal,
nonrelativistic bremsstrahlung of scalars vanishes. The
most restrictive astrophysical limit arises from the en-
ergy loss of globular-cluster stars through the process
γ + 4He → 4He + φ [10, 16, 19]

gNs <
∼

0.5× 10−10 . (4)

This limit is quite restrictive because the electric charges
and the scalar nucleon couplings each add coherently.

III. SCALAR BARYON INTERACTIONS

We next consider a long-range Yukawa force mediated
by a scalar φ that couples with equal strength gNs to

protons and neutrons. For small mφ, restrictive limits
derive from precision tests of Newton’s inverse square
law. The new Yukawa potential is traditionally expressed
as a correction to Newton’s potential in the form

V = −
GNm1m2

r

(

1 + α e−r/λ
)

, (5)

where, in terms of the atomic mass unit mu,

α =

(

gNs
)2

4πGNm2
u
= 1.37× 1037

(

gNs
)2

. (6)

The force range is

λ = m−1

φ = 19.73 cm
µeV

mφ
. (7)

In the literature, one usually finds plots of the limiting α
as a function of λ; for a recent review see Ref. [9].
New scalar interactions with nucleons can be probed

in different ways. Stellar energy-loss arguments are most
effective for boson masses so large that the interaction
range is too short for laboratory tests. Next one can
search for deviations from the inverse-square law (ISL)
behavior of the overall force between bodies. At the
largest distances, tests of the weak equivalence principle
(WEP) are most effective, i.e. one searches for force dif-
ferences on bodies with different composition and in this
way isolates the non-gravitational part [9]. The results
of such experiments can be interpreted in different ways,
depending on the assumed property of the new force. We
only consider scalar forces interacting with baryon num-
ber, but of course one can go through the same arguments
for other assumptions.
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FIG. 1: Limits on the scalar φ coupling to baryons. Curve 1
derives from stellar energy loss [10, 16]. Curves 2–6 depend
on tests of Newton’s inverse square law [20–24]. Curves 7–8
derive from testing the weak equivalence principle [25, 26].

are too high and the Higgs quartic has the wrong sign. If there is new matter at a low scale
that results in small beta functions, then the UV cutoff could be even higher.

3.2.2 Phenomenology

The phenomenology of this solution to the Little Hierarchy Problem will be discussed in
detail in future work. Here we summarize the salient features.

Preferential reheating of the sector with a light negative Higgs mass is built into the
model as � couples to the SM Higgses through scalar mixing and is exactly the scalar
reheating model described in NNaturalness [7]. Since � is naturally lighter than the lightest
Higgs, its decays preferentially reheat the sector with the lightest Higgs, evading all current
cosmological constraints. Thus if � mediates reheating to the SM, then all cosmological
problems are naturally avoided, though the reheating temperature will be very low.

Another feature of this solution is that the only particle required to interact with the
Higgs is �. Much like the axion solution to the strong CP problem, this mechanism works
for any value of f and a large value of f results in � being very difficult to detect. In this
limit, � shares all of the same benefits and problems as the axion, e.g. care is needed so as
not to overclose the universe but on the flip side � can provide a dark matter candidate.

The details will depend on the particular models, but parametrically m� ⇠ TeV2/f

and the mixing with the Higgs scales as 10TeV/f . � with masses down to 0.1 GeV (f . 10

7

GeV) are excluded by meson decays (see Ref. [8, 9] for a compendium of constraints).
Horizontal branch star cooling constraints scalar couplings to electrons and excludes � in
the range 10

13 GeV & f & 10

10 GeV and fifth force experiments exclude f & 10

17 GeV (see
Ref. [10, 11] for a compendium of constraints). This estimates are very rough and detailed
constraints will be model dependent.

Finally, if there is a non-zero cross quartic coupling between the Higgses, then the
Higgs can mix with the other Higgses. Due to the requirement of vacuum stability and the
relatively small value of the SM quartic coupling, negative cross quartics larger than a few
percent are excluded. Positive cross quartics larger than a few percent are also excluded as
large cross quartics generally push the theory out of the parameter space where all three
Higgses can obtain vevs. As a result, the mixing between the multiple Higgses is suppressed
by ⇡ few ⇥ 10

�3. The resulting exotic collider signatures are very similar to Twin Higgs
models (see e.g. Refs. [12, 13]) only with much smaller production rates. Another difference
is the absence of the v/f tuning needed to make electroweak symmetry breaking work in
Twin Higgs models.

4 Conclusion

To conclude, we briefly compare our new solution to similar solutions to the Hierarchy
Problem, Twin Higgs [14] and Little Higgs [15]. In unitary gauge, both Little Higgs and
Twin Higgs solve the gauge and Yukawa divergences by coupling the Higgs as sin v/f to our
sector and as cos v/f to our partners. The cancelations are then just a Z4 version of the
previous arguments, where two copies have been removed because gauge invariance cancels
the odd powers of v so that the extra two copies are not needed for the cancelation.
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• Two rough regions of space for the moduli 
• Small hole around 5-10 GeV 

• Moduli can be dark matter and has roughly 
all of the same features as the axion 

• Slightly heavier, scalar vs pseudo scalar, overclosing the 
universe, etc.

Moduli

1010 GeV & f & 107 GeV 1017 GeV & f & 1013 GeV

100 eV & m� & 10meV0.1GeV & m� & 100 keV



Conclusion
• Naturalness has been THE paradigm 

for particle physics for a long time 
• Still new solutions being discovered! 

• Gives hope that there might exist other new solutions 

• Can solve Little Hierarchy problem 
using Higgs partners rather than top 
partners! 

• Moduli can be probed in new and exciting ways 

• Different ways to test these theories than what is 
currently being explored


