

Improved theoretical constraints on BSM Models

Florian Staub | Planck 2018, Bonn, 21st May 2018

KARLSRUHE INSTITUTE OF TECHNOLOGY, ITP & IKP

Mainly based on

FS; Phys.Lett. B776 (2018) 407-411, [1705.03677] Krauss, FS; Eur.Phys.J. C78 (2018) no.3, 185, [1709.03501] Braathen, Goodsell, Krauss, Opferkuch, FS; Phys.Rev. D97 (2018) no.1, 015011, [1711.08460] Goodsell, FS; [1805.T0DAY] Krauss, FS; [1805.T0DAY]

KIT - Die Forschungsuniversität in der Helmholtz-Gemeinschaft

www.kit.edu

Outline

- 2 Unitarity Constraints
- 3 Vacuum Stability Checks
- 4 Checking the cut-off

Introduction

 (Non-supersymmetric) models with extended Higgs sectors usually introduce new couplings

Simplest model: real singlet extension

$$V = \frac{1}{2}\lambda_H |H|^4 + \frac{1}{2}\lambda_{HS}|H|^2S^2 + \frac{1}{2}\lambda_SS^4 + m_H^2|H|^2 + \frac{1}{2}m_S^2S^2$$

Introduction

Introduction

 (Non-supersymmetric) models with extended Higgs sectors usually introduce new couplings

Simplest model: real singlet extension

$$V = \frac{1}{2}\lambda_H |H|^4 + \frac{1}{2}\lambda_{HS}|H|^2S^2 + \frac{1}{2}\lambda_SS^4 + m_H^2|H|^2 + \frac{1}{2}m_S^2S^2$$

- The couplings are theoretically constrained by
 - Unitarity constraints:

$$\{|\lambda_H|,|\lambda_{HS}|,\tfrac{1}{2}|6\lambda_S+3\lambda_H\pm\sqrt{4\lambda_{HS}^2+9(-2\lambda_S+\lambda_H)^2}|\}<8\pi$$

- Vacuum stability constraints: $\lambda_H > 0$, $\lambda_S > 0$, $\lambda_{HS} > -4\sqrt{\lambda_H \lambda_S}$
- Constraints from the high-scale behaviour: no Landau poles, negative quartics below a given scale

Introduction

 (Non-supersymmetric) models with extended Higgs sectors usually introduce new couplings

Simplest model: real singlet extension

$$V = \frac{1}{2}\lambda_H |H|^4 + \frac{1}{2}\lambda_{HS}|H|^2S^2 + \frac{1}{2}\lambda_SS^4 + m_H^2|H|^2 + \frac{1}{2}m_S^2S^2$$

- The couplings are theoretically constrained by
 - Unitarity constraints:

$$\{|\lambda_H|,|\lambda_{HS}|,\tfrac{1}{2}|6\lambda_S+3\lambda_H\pm\sqrt{4\lambda_{HS}^2+9(-2\lambda_S+\lambda_H)^2}|\}<8\pi$$

- Vacuum stability constraints: $\lambda_H > 0$, $\lambda_S > 0$, $\lambda_{HS} > -4\sqrt{\lambda_H \lambda_S}$
- Constraints from the high-scale behaviour: no Landau poles, negative quartics below a given scale

These constraints are often derived/applied using important assumptions/approximations

Introduction

Tree-level perturbative unitarity

Introduction

Florian Staub - Improved theoretical constraints on BSM Models (Planck 2018, 21.05.18)

Tree-level perturbative unitarity

- The tree-level perturbative unitarity conditions impose constraints on 2 → 2 scattering processes
- The scattering matrix $\mathcal M$ is decomposed in partial waves as

$$\mathcal{M} = 16\pi \sum_{J} (2J+1) a_{J} P_{J}(\cos\theta) \simeq 16\pi a_{0}$$

J: is the angular momentum; $P_I(\cos\theta)$: Legendre polynomials

To first order and at tree-level, the maximal eigenvalue of the matrix is constrained to

$$|(a_0^{\max})| \le \frac{1}{2}$$

Unitarity constraints in BSM literature

In order to find a₀^{max} one needs to calculate all possible scalar 2 → 2 processes:

The scattering matrix in BSM models can become big!

(THDM: 36 × 36, Georgi-Machacek: 91 × 91)

Unitarity constraints in BSM literature

In order to find a₀^{max} one needs to calculate all possible scalar 2 → 2 processes:

The scattering matrix in BSM models can become big!

(THDM: 36 × 36, Georgi-Machacek: 91 × 91)

• One needs approximations to get nice analytical conditions:

Large *s* limit: assume $s \gg m_i^2$

Unitarity constraints in BSM literature

In order to find a_0^{max} one needs to calculate all possible scalar $2 \rightarrow 2$ processes:

The scattering matrix in BSM models can become big!

One needs approximations to get nice analytical conditions:

Large s approximation

Common approach

The unitarity constraints for BSM models are usually derived under assumption that the scattering energy is very large:

- → only point interactions are non-vanishing
- → effects from cubic couplings neglected
- → effects from EWSB neglected

It seems that the validity of the large *s* approximation was never checked!

Full Calculation

- We perform a full calculation for mass eigenstates including propagator diagrams
- We are exactly reproducing the SM results by Lee, Quigg & Thacker

Full Calculation

- We perform a full calculation for mass eigenstates including propagator diagrams
- We are exactly reproducing the SM results by Lee, Quigg & Thacker
- In order to be conservative, we generously cut out poles, e.g.

 \rightarrow One can see already an enhancement at small \sqrt{s} !

For the singlet model, we want to get an estimate for $a_0(hS \rightarrow hS)$:

The full expression is:

$$16\pi a_0(hS \to hS) = -\frac{\lambda_{HS}}{16\pi s (s - m_S^2) \sqrt{m_h^4 - 2m_h^2 (m_S^2 + s) + (m_S^2 - s)^2}} \times \left[-\left(m_h^4 - 2m_h^2 (m_S^2 + s) + (m_S^2 - s)^2\right) (-\lambda_{HS} v^2 + m_S^2 - s) + \lambda_{HS} s v^2 (s - m_S^2) \log\left(\frac{m_h^4 - 2m_h^2 m_S^2 + m_S^4 - m_S^2 s}{s (2m_h^2 + m_S^2 - s)}\right) + 3m_h^2 s (s - m_S^2) \log\left(\frac{m_h^4 - m_h^2 (2m_S^2 + s) + (m_S^2 - s)^2}{m_h^4 - m_h^2 (2m_S^2 + s) + (m_S^2 - s)^2}\right) \right]$$

For the singlet model, we want to get an estimate for $a_0(hS \rightarrow hS)$:

The full expression is:

 $16\pi a_0(hS \rightarrow hS) = \dots$

If we assume a light singlet

$$v^2 \lambda_{HS}^2 \gg m_h^2 \gg m_S^2$$

we find for s close to the threshold

$$16\pi a_0(hS \to hS) \sim \frac{\lambda_{HS}^2 v^2}{m_h^2} < 8\pi$$

For the singlet model, we want to get an estimate for $a_0(hS \rightarrow hS)$:

The full expression is:

 $16\pi a_0(hS \rightarrow hS) = \dots$

If we assume a light singlet

$$v^2 \lambda_{HS}^2 \gg m_h^2 \gg m_S^2$$

we find for s close to the threshold

$$16\pi a_0(hS \to hS) \sim \frac{\lambda_{HS}^2 v^2}{m_h^2} < 8\pi$$

• The large *s* approximation gives $\lambda_{HS} < 8\pi$

For the singlet model, we want to get an estimate for $a_0(hS \rightarrow hS)$:

The full expression is:

$$16\pi a_0(hS \rightarrow hS) = \dots$$

If we assume a light singlet

$$\nu^2 \lambda_{HS}^2 \gg m_h^2 \gg m_S^2$$

we find for s close to the threshold

$$16\pi a_0(hS \to hS) \sim \frac{\lambda_{HS}^2 \nu^2}{m_h^2} < 8\pi$$

• The large *s* approximation gives $\lambda_{HS} < 8\pi$

There is an enhancement of $\frac{\lambda_{HS} \nu^2}{m_h^2}$ for light singlet masses at small s

Singlet model: Numerical result

- Much stronger constraints on λ_{HS}
- We used \sqrt{s} < 2500 GeV which causes weaker constraints for λ_S

THDMs: light Higgs Window

- Singlet model: large enhancement for light propagator masses
- Is this the case also in THDMs? \rightarrow Let's consider $M_H < 125$ GeV

THDMs: light Higgs Window

- Singlet model: large enhancement for light propagator masses
- Is this the case also in THDMs? \rightarrow Let's consider $M_H < 125$ GeV
- Small $|M_{12}|$: For $m_H = m_h = \sqrt{|M_{12}|} \ll m_A = m_{H^+} \sim \sqrt{s}$ we find

$$\frac{a_0^{\max,s}}{a_0^{\max,s\to\infty}} \sim \frac{2}{3}\sqrt{\frac{m_A}{m_h}}\log\frac{m_A}{m_h}$$

• Large $|M_{12}|$: For $m_H = m_h \sim \sqrt{s} \ll (m_A = m_{H^+} = \sqrt{|M_{12}|})$ we find

$$\frac{a_0^{\max,s}}{a_0^{\max,s\to\infty}} \sim \frac{1}{2} \frac{|M_{12}|}{m_h^2}$$

THDMs: light Higgs Window

- Singlet model: large enhancement for light propagator masses
- Is this the case also in THDMs? \rightarrow Let's consider $M_H < 125$ GeV
- Small $|M_{12}|$: For $m_H = m_h = \sqrt{|M_{12}|} \ll m_A = m_{H^+} \sim \sqrt{s}$ we find

$$\frac{a_0^{\max,s}}{a_0^{\max,s\to\infty}} \sim \frac{2}{3}\sqrt{\frac{m_A}{m_h}}\log\frac{m_A}{m_h}$$

• Large $|M_{12}|$: For $m_H = m_h \sim \sqrt{s} \ll (m_A = m_{H^+} = \sqrt{|M_{12}|})$ we find

$$\frac{a_0^{\max,s}}{a_0^{\max,s\to\infty}} \sim \frac{1}{2} \frac{|M_{12}|}{m_h^2}$$

Large enhancement for large m_A or $|M_{12}|!$

Unitarity Constraints

Florian Staub - Improved theoretical constraints on BSM Models (Planck 2018, 21.05.18)

Numerical Results for $m_H < m_h$

 First row: ratio of points which are ruled out by the new constraints

[Goodsell.FS.1805.TODAY]

 Second row: average enhancement

Overview of other results

We checked many other models/scenarios and often found that the *s*-dependent constraints can become much stronger:

- THDM:
 - Also stronger constraints for heavy Higgs scenarios
 - (effective) cubic terms are usually more important than loop corrections

Triplet models:

- Mass splitting between neutral and charged triplet stronger constrained
- Mixing between triplet and doublet stronger constrained
- Georgi Machacek model:
 - Strong constraints on heavy Higgs masses

Florian Staub – Improved theoretical constraints on BSM Models (Planck 2018, 21.05.18)

Strong constraints on triplet contributions to ew VEV

an loop

[Krauss.FS.1805.TODAY]

[Goodsell,FS,1805.TODAY]

[Krauss,FS,1805.TODAY]

Unitarity Constraints

13/26

Vacuum stability checks

Vacuum Stability Checks

Vacuum stability

'Our vacuum' might just be a local minimum in the scalar potential:

- A deeper minimum might exist with different Higgs VEVs, maybe even with charge and colour breaking
- The potential might unbounded from below for very large field values

Vacuum stability

'Our vacuum' might just be a local minimum in the scalar potential:

- A deeper minimum might exist with different Higgs VEVs, maybe even with charge and colour breaking
- The potential might unbounded from below for very large field values

The second consideration leads to constraints like

$$\lambda_H > 0, \qquad \lambda_S > 0, \qquad \lambda_{HS} > -4\sqrt{\lambda_H \lambda_S}$$

Vacuum stability

'Our vacuum' might just be a local minimum in the scalar potential:

- A deeper minimum might exist with different Higgs VEVs, maybe even with charge and colour breaking
- The potential might unbounded from below for very large field values

The second consideration leads to constraints like

$$\lambda_H > 0, \qquad \lambda_S > 0, \qquad \lambda_{HS} > -4\sqrt{\lambda_H \lambda_S}$$

Presence of large couplings

Radiative corrections can be crucial and change the situation at the loop-level

Vacuum Stability Checks

RGE running

We can already see from the RGE running that a tree-level check might be misleading:

 \rightarrow Small negative values run quickly positive in the presence of other large quartic couplings

Vacuum Stability Checks

Vacuum stability at loop-level in the THDM

We checked the vacuum stability of the THDM using:

- The RGE improved potential to check the high-energy behaviour
- The full one-loop effective potential to check for deeper minima close to the ew scale

Numerical analysis

The check of the vacuum stability has been done **fully numerically** using the combination SARAH, SPheno, Vevacious

Comparison for single points

- We can compare the three predictions:
 - Tree-level potential
 - One-loop effective potential
 - 8 RGE improved potential
- We usually find a good agreement between both loop calculations:

Vacuum Stability Checks

Misidentification rate

Katisuher Institut für Technologie

- The loop effect stabilize the vacuum
- → Tree-level checks could give wrong results

Tree-level checks are (often) too strong for small neg. values of quartics!

Vacuum Stability Checks

Similar results

We concentrated here on UFB directions in THDMs.

Other results are:

- THDMs:
 - Meta-stable points: more than 90% of the points become stable at loop-level
- Georgi-Machacek-Model:
 - Similar behaviour to THDMs
 - → Large fraction of points become stabilized at loop-level

Vacuum Stability Checks

[Krauss.FS.1709.03501]

[FS,1705.03677]

Finding the cut-off

Checking the cut-off

Florian Staub - Improved theoretical constraints on BSM Models (Planck 2018, 21.05.18)

Matching and Running

- To test the high-scale behaviour of a model, RGE running is needed
- The RGEs need the MS parameters as input
- → The MS parameters can be calculated from the masses/mixing angles ('Matching')

Matching and Running

- To test the high-scale behaviour of a model, RGE running is needed
- The RGEs need the MS parameters as input
- → The MS parameters can be calculated from the masses/mixing angles ('Matching')

Common Lore

'N-loop running needs N-1-loop matching'

→ very often 1-loop running is combined with tree-level matching

Matching and Running

- To test the high-scale behaviour of a model, RGE running is needed
- The RGEs need the MS parameters as input
- → The MS parameters can be calculated from the masses/mixing angles ('Matching')

Common Lore

'N-loop running needs N-1-loop matching'

 \rightarrow very often 1-loop running is combined with tree-level matching

However, this gets only the leading logarithm correct!

Scale Dependence

[Braathen,Goodsell,Krauss,Opferkuch,FS,1711.08460]

- The results shouldn't depend (significanlty) on the choice of the matching scale
- Compare scale dependence explicitly by comparing different loop-levels:

1-loop Running & Tree-Level matching suffer from a huge uncertainty
Best results for 2-loop running & matching

Checking the cut-off

[Braathen,Goodsell,Krauss,Opferkuch,FS,1711.08460]

The **cut-off scale** depends strongly on the **loop-levels** of running/matching:

(<i>n</i> , <i>m</i>)	λ	λ_S	λ_{SH}	Λ [GeV]
(T, 1)	0.24	4 4	4 4	$3.2 \cdot 10^{3}$
(T, 2)	0.34	1.1	-1.1	$1.3 \cdot 10^4$
(1,1)	0.33	0.24	0.07	$3.2 \cdot 10^{8}$
(1, 2)	0.55	0.24	-0.97	$2.5 \cdot 10^{9}$
(2,1)	0 22	0.19	0.04	$2.5 \cdot 10^{10}$
(2, 2)	0.32	0.10	-0.94	$2.0 \cdot 10^{11}$

Example for Z_2 breaking case with $M_H = 700$ GeV and $\tan \alpha = 0.1$

The first order approximation (1-loop running, tree-level matching) can be wrong by many orders of magnitude

Checking the cut-off

THDM: changes in the cut-off

[Krauss,Opferkuch,FS,to appear]

The cut-off can in- or decrease at higher loop-levels:

- The effects don't wash out when averaging over many points
- Huge differences are visible for specific points

Summary

- Theoretical constraints on new couplings models are important
- Important corrections can appear compared to the common approaches:
 - Unitarity constraints at small *s* can be much stronger compared to the $s \rightarrow \infty$ limit
 - The scalar potential can be stabilised by loop-effects and UFB directions disappear
 - Predictions based on 2-loop running& matching are much more accurate and can be very different

Tools

The tools to study the improved constraints for many models are public

- SARAH: sarah.hepforge.org
- SPheno: spheno.hepforge.org
- Vevacious: vevacious.hepforge.org

Summary

Backup

Summary

Florian Staub - Improved theoretical constraints on BSM Models (Planck 2018, 21.05.18)

s Dependence

Assuming a fixed *s*, we find

Finite s

We see that the scattering at small *s* can be highly enhanced compared to the large *s* limit!

Summary

Comparison between old and new limits

 $\log r$

2.

1.5

1.

0.5

0

- $\log(a^s/a^{s\to\infty})$
- contours: values of m₃, m₅
- red lines: exclusion limit from new constraints

- best scattering energy
- contours: values of M_2

Vector-like extension

[Braathen,Goodsell,Krauss,Opferkuch,FS,1711.08460]

Considering

$$L = L_{\rm SM} - \left(Y'_t Q' \cdot Ht' + \tilde{Y}'_t \tilde{Q}' \cdot \overline{H} \tilde{t}' + m_T \tilde{t}' t' + m_Q \tilde{Q}' Q' + \text{h.c.}\right)$$

we can check at which scale λ runs negatve:

Florian Staub – Improved theoretical constraints on BSM Models (Planck 2018, 21.05.18)