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Introduction

(Non-supersymmetric) models with extended Higgs sectors usually
introduce new couplings

Simplest model: real singlet extension

V = 1

2
λH |H|4 + 1

2
λHS|H|2S2 + 1

2
λSS4 +m2

H |H|2 + 1

2
m2

SS2

The couplings are theoretically constrained by
Unitarity constraints:

{|λH |, |λHS|, 1
2 |6λS +3λH ±

√
4λ2

HS +9(−2λS +λH )2|} < 8π

Vacuum stability constraints: λH > 0, λS > 0, λHS >−4
√
λHλS

Constraints from the high-scale behaviour: no Landau poles,
negative quartics below a given scale

These constraints are often derived/applied using important
assumptions/approximations
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Tree-level perturbative unitarity
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Tree-level perturbative unitarity

The tree-level perturbative unitarity conditions impose constraints
on 2 → 2 scattering processes

The scattering matrix M is decomposed in partial waves as

M = 16π
∑

J
(2J +1)aJ PJ (cosθ) ' 16πa0

J : is the angular momentum; PJ (cosθ): Legendre polynomials

To first order and at tree-level, the maximal eigenvalue of the
matrix is constrained to

|(amax
0 )| ≤ 1

2

Unitarity Constraints

Florian Staub – Improved theoretical constraints on BSM Models (Planck 2018, 21.05.18) 5/26



Unitarity constraints in BSM literature

In order to find amax
0 one needs to calculate all possible scalar 2 → 2

processes:

The scattering matrix in BSM models can become big!
(THDM: 36×36, Georgi-Machacek: 91×91)

One needs approximations to get nice analytical conditions:
Large s limit: assume s À m2

i

m1

m2

m3

m4

︸ ︷︷ ︸
λ

√
1− 4m2

s
8π → λ

8π

m5

m1

m2

m3

m4

︸ ︷︷ ︸
κ2

√
1− 4m2

s

8π(M2−s)
→0

m5

m1

m2

m3

m4

m5

m1

m2

m3

m4

︸ ︷︷ ︸
κ2 log

(
M2

−4m2+M2+s

)
8π
p

s(s−4m2)
→0
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Large s approximation

Common approach
The unitarity constraints for BSM models are usually derived under
assumption that the scattering energy is very large:

→ only point interactions are non-vanishing

→ effects from cubic couplings neglected

→ effects from EWSB neglected

It seems that the validity of the large s approximation was never
checked!

Unitarity Constraints
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Full Calculation
[Goodsell,FS,1805.TODAY]

We perform a full calculation for mass eigenstates including
propagator diagrams

We are exactly reproducing the SM results by Lee, Quigg & Thacker

In order to be conservative, we generously cut out poles,e.g

→ One can see already an enhancement at small
p

s !

Unitarity Constraints
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Singlet model: Estimate

For the singlet model, we want to get an estimate for a0(hS → hS):
The full expression is:

16πa0(hS → hS) =− λHS

16πs
(
s−m2

S

)√
m4

h −2m2
h

(
m2

S + s
)+ (

m2
S − s

)2
×

[
−

(
m4

h −2m2
h

(
m2

S + s
)+ (

m2
S − s

)2
)(−λHSv2 +m2

S − s
)

+λHSsv2 (
s−m2

S

)
log

(
m4

h −2m2
hm2

S +m4
S −m2

Ss

s
(
2m2

h +m2
S − s

) )

+3m2
hs

(
s−m2

S

)
log

(
m2

hs

m4
h −m2

h

(
2m2

S + s
)+ (

m2
S − s

)2

)]

If we assume a light singlet

v2λ2
HS À m2

h À m2
S

we find for s close to the threshold

16πa0(hS → hS) ∼ λ2
HSv2

m2
h

< 8π

The large s approximation gives λHS < 8π

Unitarity Constraints
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h À m2
S

we find for s close to the threshold

16πa0(hS → hS) ∼ λ2
HSv2

m2
h

< 8π

The large s approximation gives λHS < 8π

There is an enhancement of λHSv2

m2
h

for light singlet masses at small s
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Singlet model: Numerical result

mS=50GeV

mS=500GeV
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Much stronger constraints on λHS

We used
p

s < 2500 GeV which causes weaker constraints for λS

Unitarity Constraints
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THDMs: light Higgs Window

Singlet model: large enhancement for light propagator masses

Is this the case also in THDMs? → Let’s consider MH < 125 GeV

Unitarity Constraints
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Is this the case also in THDMs? → Let’s consider MH < 125 GeV

Small |M12|: For mH = mh =p|M12| ¿ mA = mH+ ∼p
s we find

amax,s
0

amax,s→∞
0

∼ 2

3

√
mA

mh
log

mA

mh

Large |M12|: For mH = mh ∼p
s ¿ (mA = mH+ =p|M12|) we find

amax,s
0

amax,s→∞
0

∼ 1

2

|M12|
m2

h
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THDMs: light Higgs Window

Singlet model: large enhancement for light propagator masses
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√
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Large |M12|: For mH = mh ∼p
s ¿ (mA = mH+ =p|M12|) we find

amax,s
0

amax,s→∞
0

∼ 1

2

|M12|
m2

h

Large enhancement for large mA or |M12|!
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Numerical Results for mH < mh

[Goodsell,FS,1805.TODAY]
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Overview of other results

We checked many other models/scenarios and often found that the
s-depenendent constraints can become much stronger:

THDM: [Goodsell,FS,1805.TODAY]

Also stronger constraints for heavy Higgs scenarios
(effective) cubic terms are usually more important than loop
corrections

Triplet models: [Krauss,FS,1805.TODAY]

Mass splitting between neutral and charged triplet stronger
constrained
Mixing between triplet and doublet stronger constrained

Georgi Machacek model: [Krauss,FS,1805.TODAY]

Strong constraints on heavy Higgs masses
Strong constraints on triplet contributions to ew VEV

Unitarity Constraints
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Vacuum stability checks

Vacuum Stability Checks
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Vacuum stability
’Our vacuum’ might just be a local minimum in the scalar potential:

1 A deeper minimum might exist with different Higgs VEVs, maybe
even with charge and colour breaking

2 The potential might unbounded from below for very large field
values

The second consideration leads to constraints like

λH > 0, λS > 0, λHS >−4
√
λHλS

Presence of large couplings
Radiative corrections can be crucial and change the situation at the
loop-level

Vacuum Stability Checks
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RGE running
We can already see from the RGE running that a tree-level check might
be misleading:

→ Small negative values run quickly positive in the presence of
other large quartic couplings

Vacuum Stability Checks
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Vacuum stability at loop-level in the
THDM

We checked the vacuum stability of the THDM using:
1 The RGE improved potential to check the high-energy behaviour
2 The full one-loop effective potential to check for deeper minima

close to the ew scale

Numerical analysis
The check of the vacuum stability has been done fully numerically using
the combination SARAH, SPheno, Vevacious

Vacuum Stability Checks
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Comparison for single points

We can compare the three predictions:
1 Tree-level potential
2 One-loop effective potential
3 RGE improved potential

We usually find a good agreement between both loop
calculations:
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Misidentification rate
The loop effect stabilize the vacuum [FS,1705.03677]

→ Tree-level checks could give wrong results
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Tree-level checks are (often) too strong for small neg. values of quartics!
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Similar results

We concentrated here on UFB directions in THDMs.

Other results are:
THDMs: [FS,1705.03677]

Meta-stable points: more than 90% of the points become stable at
loop-level

Georgi-Machacek-Model: [Krauss,FS,1709.03501]

Similar behaviour to THDMs
→ Large fraction of points become stabilized at loop-level

Vacuum Stability Checks
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Finding the cut-off

Checking the cut-off
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Matching and Running

To test the high-scale behaviour of a model, RGE running is
needed

The RGEs need the MS parameters as input

→ The MS parameters can be calculated from the masses/mixing
angles (’Matching’)

Common Lore
’N-loop running needs N −1-loop matching’

→ very often 1-loop running is combined with tree-level matching

However, this gets only the leading logarithm correct!

Checking the cut-off

Florian Staub – Improved theoretical constraints on BSM Models (Planck 2018, 21.05.18) 22/26



Matching and Running

To test the high-scale behaviour of a model, RGE running is
needed

The RGEs need the MS parameters as input

→ The MS parameters can be calculated from the masses/mixing
angles (’Matching’)

Common Lore
’N-loop running needs N −1-loop matching’

→ very often 1-loop running is combined with tree-level matching

However, this gets only the leading logarithm correct!

Checking the cut-off

Florian Staub – Improved theoretical constraints on BSM Models (Planck 2018, 21.05.18) 22/26



Matching and Running

To test the high-scale behaviour of a model, RGE running is
needed

The RGEs need the MS parameters as input

→ The MS parameters can be calculated from the masses/mixing
angles (’Matching’)

Common Lore
’N-loop running needs N −1-loop matching’

→ very often 1-loop running is combined with tree-level matching

However, this gets only the leading logarithm correct!

Checking the cut-off

Florian Staub – Improved theoretical constraints on BSM Models (Planck 2018, 21.05.18) 22/26



Scale Dependence
[Braathen,Goodsell,Krauss,Opferkuch,FS,1711.08460 ]

The results shouldn’t depend (significanlty) on the choice of the
matching scale
Compare scale dependence explicitly by comparing different
loop-levels:

1-loop Running & Tree-Level matching suffer from a huge uncertainty

Best results for 2-loop running & matching
Checking the cut-off
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Singlet-Model: cut-off scale

[Braathen,Goodsell,Krauss,Opferkuch,FS,1711.08460 ]

The cut-off scale depends strongly on the loop-levels of
running/matching:

(n,m) λ λS λSH Λ [GeV]
(T ,1)

0.34 1.1 -1.1
3.2 ·103

(T ,2) 1.3 ·104

(1,1)
0.33 0.24 -0.97

3.2 ·108

(1,2) 2.5 ·109

(2,1)
0.32 0.18 -0.94

2.5 ·1010

(2,2) 2.0 ·1011

Example for Z2 breaking case with MH = 700 GeV and tanα= 0.1

The first order approximation (1-loop running, tree-level matching) can be
wrong by many orders of magnitude

Checking the cut-off
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THDM: changes in the cut-off

[Krauss,Opferkuch,FS,to appear]

The cut-off can in- or decrease at higher loop-levels:

The effects don’t wash out when averaging over many points

Huge differences are visible for specific points

Checking the cut-off
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Summary

Theoretical constraints on new couplings models are important
Important corrections can appear compared to the common
approaches:

Unitarity constraints at small s can be much stronger compared to
the s →∞ limit
The scalar potential can be stabilised by loop-effects and UFB
directions disappear
Predictions based on 2-loop running& matching are much more
accurate and can be very different

Tools
The tools to study the improved constraints for many models are public

SARAH: sarah.hepforge.org

SPheno: spheno.hepforge.org

Vevacious: vevacious.hepforge.org

Summary
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Backup

Summary
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s Dependence

Assuming a fixed s, we find

Finite s
We see that the scattering at small s can be highly enhanced compared to
the large s limit!

Summary
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Comparison between old and new limits
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Vector-like extension
[Braathen,Goodsell,Krauss,Opferkuch,FS,1711.08460 ]

Considering

L = LSM − (
Y ′

t Q′ ·Ht′+ Ỹ ′
t Q̃′ ·Ht̃′+ mT t̃′t′ + mQQ̃′Q′+h.c.

)
we can check at which scale λ runs negatve:
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