

Searching for new physics in Vector Boson Scattering at the LHC

Claudia García-García

Instituto de Física Teórica, Universidad Autónoma de Madrid/CSIC

claudia.garcia@uam.es

May 22nd, 2018

Planck 2018, Bonn

Based on JHEP 1711 (2017) 098, [arXiv:1707.04580]

R. L. Delgado, A. Dobado, D. Espriu, CGG, M.J. Herrero, X. Marcano & J.J. Sanz-Cillero

What is the dynamical generation of EWSB?

Vector Boson Scattering @ the LHC

- Vector Boson Scattering (VBS) very sensitive to New Physics
- Searches for VBS planned @ the LHC!

• Symmetries: Gauge $\longrightarrow SU(2)_L \times U(1)_Y$ and EW Chiral $\longrightarrow SU(2)_L \times SU(2)_R$ EChL copy of ChPT in QCD

[A. C. Longhitano, 1980; T. Appelquist et al., 1980]

Claudia García-García (IFT, Madrid)

- Symmetries: Gauge $\longrightarrow SU(2)_L \times U(1)_Y$ and EW Chiral $\longrightarrow SU(2)_L \times SU(2)_R$ EChL copy of ChPT in QCD
- O Light d.o.f. :

 \rightarrow EW GB's w^{\pm}, z introduced non-linearly $U(w^{\pm}, z) = e^{\frac{iw^a \tau^a}{v}} \bigvee_{w^{\pm}, z \Leftrightarrow W_L^{\pm}, Z_L}^{\text{Equivalence Theorem!}}$

ightarrow EW gauge bosons W^{\pm}, Z described by $D_{\mu}, W_{\mu
u}, \& B_{\mu
u}$

 \rightarrow Higgs singlet under Chiral symmetry $\longrightarrow \mathcal{F}(h) = 1 + 2a\frac{h}{v} + b\left(\frac{h}{v}\right)^2$

- Symmetries: Gauge $\longrightarrow SU(2)_L \times U(1)_Y$ and EW Chiral $\longrightarrow SU(2)_L \times SU(2)_R$ EChL copy of ChPT in QCD
- O Light d.o.f. :

• Building blocks:

$$D_{\mu}U \qquad \qquad \hat{W}_{\mu
u}, \hat{B}_{\mu
u} \qquad \qquad \mathcal{F}(h) \qquad \qquad \mathcal{V}_{\mu} = (D_{\mu}U)U^{\dagger}$$

- Symmetries: Gauge $\longrightarrow SU(2)_L \times U(1)_Y$ and EW Chiral $\longrightarrow SU(2)_L \times SU(2)_R$ EChL copy of ChPT in QCD
- Light d.o.f. :

 $\rightarrow \text{EW GB's } w^{\pm}, z \text{ introduced non-linearly } U(w^{\pm}, z) = e^{\frac{iw^a \tau^a}{v}} \xrightarrow{\text{Equivalence Theorem!}} w^{\pm}, z \Leftrightarrow W_L^{\pm}, Z_L$ $\rightarrow \text{EW gauge bosons } W^{\pm}, Z \text{ described by } D_{\mu}, W_{\mu\nu}, \& B_{\mu\nu}$ $\rightarrow \text{Higgs singlet under Chiral symmetry} \longrightarrow \mathcal{F}(h) = 1 + 2a\frac{h}{v} + b\left(\frac{h}{v}\right)^2$

• Building blocks:

$$D_{\mu}U \qquad \qquad \hat{W}_{\mu
u}, \hat{B}_{\mu
u} \qquad \qquad \mathcal{F}(h) \qquad \qquad \mathcal{V}_{\mu} = (D_{\mu}U)U^{\dagger}$$

 $\mathscr{L}_{EChL} = \mathscr{L}_2 + \mathscr{L}_4$ Relevant terms & chiral parameters for VBS

$$\mathcal{L}_2 = \frac{v^2}{4} \left[1 + 2a\frac{H}{v} + b\frac{H^2}{v^2} \right] \operatorname{Tr} \left(D^{\mu}U^{\dagger}D_{\mu}U \right) + \frac{1}{2}\partial^{\mu}H \,\partial_{\mu}H + \dots$$

$$\mathcal{L}_4 = a_4 \Big[\operatorname{Tr}(\mathcal{V}_{\mu} \mathcal{V}_{\nu}) \Big] \Big[\operatorname{Tr}(\mathcal{V}^{\mu} \mathcal{V}^{\nu}) \Big] + a_5 \Big[\operatorname{Tr}(\mathcal{V}_{\mu} \mathcal{V}^{\mu}) \Big] \Big[\operatorname{Tr}(\mathcal{V}_{\nu} \mathcal{V}^{\nu}) \Big] + \dots$$

[A. C. Longhitano, 1980; T. Appelquist et al., 1980]

Claudia García-García (IFT, Madrid)

- Symmetries: Gauge $\longrightarrow SU(2)_L \times U(1)_Y$ and EW Chiral $\longrightarrow SU(2)_L \times SU(2)_R$ EChL copy of ChPT in QCD
- Light d.o.f. :

 $\rightarrow \text{EW GB's } w^{\pm}, z \text{ introduced non-linearly } U(w^{\pm}, z) = e^{\frac{iw^a \tau^a}{v}} \xrightarrow{\text{Equivalence Theorem!}} w^{\pm}, z \Leftrightarrow W_L^{\pm}, Z_L$ $\rightarrow \text{EW gauge bosons } W^{\pm}, Z \text{ described by } D_{\mu}, W_{\mu\nu}, \& B_{\mu\nu}$ $\rightarrow \text{Higgs singlet under Chiral symmetry} \longrightarrow \mathcal{F}(h) = 1 + 2a\frac{h}{v} + b\left(\frac{h}{v}\right)^2$

• Building blocks:

$$D_{\mu}U \qquad \qquad \hat{W}_{\mu
u}, \hat{B}_{\mu
u} \qquad \qquad \mathcal{F}(h) \qquad \qquad \mathcal{V}_{\mu} = (D_{\mu}U)U^{\dagger}$$

 $\mathscr{L}_{EChL} = \mathscr{L}_2 + \mathscr{L}_4$ Relevant terms & chiral parameters for VBS

Claudia García-García (IFT, Madrid)

Relevant Chiral Parameters

• Most relevant: **a** a_4 a_5 \longrightarrow Remain present for g = g' = 0

• Constraints

W⁺Z resonant scattering @ the LHC

Study resonant behavior in W⁺Z scattering @ the LHC

Requirement of unitarity

No use of Equivalence Theorem

Implementation following: [D. Espriu et al., Phys. Rev. D90, 015035 (2014)]

Claudia García-García (IFT, Madrid)

Planck 2018

Claudia García-García (IFT, Madrid)

Claudia García-García (IFT, Madrid)

The tool to introduce the resonances

Used to mimic IAM vector resonances

EW gauge & Chiral invariant

$$\mathcal{L}_{V} = -\frac{1}{4} \text{Tr}(\hat{V}_{\mu\nu}\hat{V}^{\mu\nu}) + \frac{1}{2}M_{V}^{2}\text{Tr}(\hat{V}_{\mu}\hat{V}^{\mu}) + \frac{f_{V}}{2\sqrt{2}}\text{Tr}(\hat{V}_{\mu\nu}f_{+}^{\mu\nu}) + \frac{ig_{V}}{2\sqrt{2}}\text{Tr}(\hat{V}_{\mu\nu}[u^{\mu}, u^{\nu}])$$

[G. Ecker, et al., Phys. Lett. B223, 425 (1989)]

The tool to introduce the resonances

The tool to introduce the resonances

• Proca Lagrangian with constant g_V violates unitarity

Claudia García-García (IFT, Madrid)

Vector Resonances in the W⁺Z channel @ LHC

ullet We study charged vector resonances, V , from a triplet, V^\pm, V^0

Mediated only by V
 W+Z channel very promising
 No severe QCD backgrounds
 Clean leptonic signal

$$\circ$$
 Signals $pp
ightarrow W^+Zjj$ $pp
ightarrow \ell_1^+ \ell_1^- \ell_2^+ E_T jj$ $pp
ightarrow JJjj$

Claudia García-García (IFT, Madrid)

(8)

Vector Resonances in the W⁺Z channel @ LHC

ullet We study charged vector resonances, V , from a triplet, V^\pm, V^0

Mediated only by V
 W+Z channel very promising
 No severe QCD backgrounds
 Clean leptonic signal

$$ullet$$
 Signals $pp
ightarrow W^+Zjj$ $pp
ightarrow \ell_1^+ \ell_1^- \ell_2^+ E_T jj$ $pp
ightarrow JJjj$

Claudia García-García (IFT, Madrid)

(8)

VBS Event Selection

• **VBS kinematics** very characteristic

• Extra jets key to select VBS efficiently

• Very effective in our case: W⁺Zjj

Claudia García-García (IFT, Madrid)

May 22nd, 2018 (9

VBS Event Selection

• **VBS kinematics** very characteristic

• Extra jets key to select VBS efficiently

• Very effective in our case: W⁺Zjj

Claudia García-García (IFT, Madrid)

May 22nd, 2018

Results for W⁺Zjj: invariant mass distributions

Results for W⁺Zjj: statistical significance

• Given M_V :

significance **increases** with (a - 1)

• Given (a - 1): significance decreases with M_V

LHC sensitive to $a \in [0.9, 1]$ for $M_V \in [1.5, 2.5]$ TeV and $\mathcal{L} = 300$ fb⁻¹

Claudia García-García (IFT, Madrid)

Results for $\ell^+ \ell^- \ell'^+ \nu$ jj : distributions

Claudia García-García (IFT, Madrid)

Planck 2018

(12 May 22nd, 2018

Results for $\ell^+ \ell^- \ell'^+ \nu$ jj : significance

- Clean and controlled
- Requires High Luminosity

Events summed over optimized intervals

Results for $\ell^+ \ell^- \ell'^+ \nu$ jj : significance

- Clean and controlled
- Requires High Luminosity

Events summed over optimized intervals

Estimates for other channels: JJjj

- Very high significances!
- Very promising channel
- More dedicated study on demand

Estimates obtained by: $N_{hadronic}^{IAM-MC} = N_{WZ}^{IAM-MC} \times BR(W \rightarrow hadrons) \times BR(Z \rightarrow hadrons) \times \epsilon_W \times \epsilon_Z$

Estimates for other channels: JJjj

- Very high significances!
- Very promising channel
 for L = 3000 fb⁻¹ → a ∈ [0.9, 1]
 More dedicated study on demand

Estimates obtained by: $N_{hadronic}^{IAM-MC} = N_{WZ}^{IAM-MC} \times BR(W \rightarrow hadrons) \times BR(Z \rightarrow hadrons) \times \epsilon_W \times \epsilon_Z$

Claudia García-García (IFT, Madrid)

Estimates for other channels: JJjj

Claudia García-García (IFT, Madrid)

• VBS optimal place to **test deviations** introduced by the **EChL**

• Dynamically generated vector resonances from unitarized EChL can be seen @ LHC

- → Very high statistical significance in WZ final state
- -> Promising results in leptonic channel for some scenarios and HL-LHC
- --> High sensitivity in final states with fat jets

• Study Resonances of 1.5 - 2.5 TeV \longrightarrow broad sensitivity to EChL params $a a_4 a_5$ • Depending on:

- final state
- luminosity

• Improving selection cuts + study other distributions might improve the results

• VBS optimal place to **test deviations** introduced by the **EChL**

• Dynamically generated vector resonances from unitarized EChL can be seen @ LHC

- → Very high statistical significance in WZ final state
- -> Promising results in leptonic channel for some scenarios and HL-LHC
- --> High sensitivity in final states with fat jets

Study Resonances of I.5 - 2.5 TeV → broad sensitivity to EChL params
 a a₄ a₅
 Depending on:

- final state
- luminosity

THANK YOU!

• Improving selection cuts + study other distributions might improve the results

Back up Slides

- Energy at which occurs very sensitive to $(a 1), a_4, a_5$
- At tree level, for the values considered $a \in [0.9, 1], a_4, a_5 \in [10^{-3}, 10^{-4}]$ unitarity violation happens at the few TeV scale

Unitarity Violation (2)

Claudia García-García (IFT, Madrid)

Planck 2018

Properties of resonances: top contribution

[S. Dawson, G. Valencia, Phys. Lett. B 246 (1990) 156]

Top loop contribution decreases with energy

(Effects of renormalization not taken into account)

• Negligible with respect to Goldstone boson loops above I TeV

• Subleading effects on resonance properties

Properties of resonances: the b parameter

- Indirect constraints: $b \in [0, 2]$ [R.L. Delgado, A. Dobado et al., Phys. Rev. Lett. 114 (2015) 221803]
- Relaxing condition $b = a^2$ does not modify properties of resonances

Claudia García-García (IFT, Madrid)

The IAM-MC g_V

IAM-MC Form Factor **IAM-MC** Form Factor respects Froissart bound $\sigma(s) \leq \sigma_0 \log^2 \left(\frac{s}{s_0}\right)$ $g_V^2(z) = g_V^2(M_V^2) \frac{M_V^2}{z} \text{ for } s < M_V^2$ $g_V^2(z) = g_V^2(M_V^2) \frac{M_V^4}{z^2} \text{ for } s > M_V^2$ assumes no other resonances appear recovers IAM resonance behavior - IAM -IAM-MC $M_V = 1479 \text{ GeV}$ $\Gamma_{\rm V} = 42 \text{ GeV}$ $-EChL_{tree}^{(2)}$ $g_V(M_V) = 0.058$ 0.8 $\frac{11}{100}$ 0.4 a = 0.9 $a_4 = 9.5 \cdot 10^{-4}$ 0.2 $a_5 = -6.5 \cdot 10^{-4}$ 0 500 1000 1500 2500 2000 3000 \sqrt{s} (GeV)

ullet Other choices of $g_V \longrightarrow$ unphysical/unitarity violating

Other choices of g_V

• Non IAM-MC choices of $g_V \rightarrow$ unphysical/unitarity violating results

Examples:

Crossing-symmetric form factor:
$$g_V^2(z) = \theta(M_V^2 - z)g_V^2(M_V^2)\frac{M_V^2}{z} + \theta(z - M_V^2)g_V^2(M_V^2)\frac{M_V^4}{z^2}$$

Violates unitarity!

Claudia García-García (IFT, Madrid)

Comparison with the linear case

• Weakly interacting dynamics — No dyn. generated resonances

• In linear Lagrangian:

Introduce resonances directly \rightarrow Integrate out to relate $M, \Gamma \leftrightarrow a b a_4 a_5$

Different counting — Different weighting of operators

Scale suppression
$$\longrightarrow$$
 For $a_{4,5} \sim 10^{-4}$ \longrightarrow $F_{S,[0,1]} \sim 10^{-12} \,\mathrm{GeV}^{-4}$