White Dwarfs as DM Detectors

23 May 2018, 16:10
20m
Lecture Hall 1, PI (Bonn)

Lecture Hall 1, PI

Bonn

Physikalisches Institut Nussallee 12 53115 Bonn

Speaker

Ryan Janish (University of California, Berkeley)

Description

Dark matter that is capable of sufficiently heating a local region in a white dwarf will trigger runaway fusion and ignite a type 1a supernova. We consider dark matter (DM) candidates that heat through the production of high-energy standard model (SM) particles, and show that such particles will efficiently thermalize the white dwarf medium and ignite supernovae. Based on the existence of long-lived white dwarfs and the observed supernovae rate, we put new constraints on ultra-heavy DM candidates $m_\chi \gtrsim 10^{16}~\text{GeV}$ which produce SM particles through annihilation, decay, and DM-SM scattering in the stellar medium. As a concrete example, we rule out supersymmetric Q-ball DM in parameter space complementary to terrestrial bounds. We put further constraints on DM that is captured by white dwarfs, considering the formation and self-gravitational collapse of a DM core. For asymmetric DM, such a core may form a black hole that ignites a supernovae via Hawking radiation, and for ``almost asymmetric'' DM with non-zero but sufficiently small annihilation cross section, the core may ignite the star via a burst of annihilation during gravitational collapse. This constrains much lighter candidates, $m_\chi \gtrsim 10^{7}~\text{GeV}$. It is also intriguing that the DM-induced ignition discussed in this work provide an alternative mechanism of triggering supernovae from sub-Chandrasekhar mass progenitors.

Presentation materials