Constraining Ultralight Scalars with Neutron Star Superradiance

Paul Riggins

UC Berkeley

In collaboration with

Planck 2018

David E. Kaplan (Johns Hopkins University)
Surject Rajendran (UC Berkeley)

Rotational Superradiance has been well studied in Black Holes, [e.g., Brito, et al., 2015]

and

applied to constrain new ultralight particles,

[e.g., Arvanitaki, et al., 2009, 2015]

Rotational Superradiance has been well studied in Black Holes,

and

[e.g., Brito, et al., 2015]

applied to constrain new ultralight particles,

[e.g., Arvanitaki, et al., 2009, 2015]

BUT

these constraints are highly sensitive to the (difficult-to-measure) BH rotation rate

and

superradiance can occur in any rotating system with dissipation

[Zel'dovich, 1971]

Rotational Superradiance has been well studied in Black Holes,
[e.g., Brito, et al., 2015]

and

applied to constrain new ultralight particles,

[e.g., Arvanitaki, et al., 2009, 2015]

BUT

these constraints are highly sensitive to the (difficult-to-measure) BH rotation rate

and

superradiance can occur in any rotating system with dissipation

[Zel'dovich, 1971]

SO

we consider superradiance in millisecond pulsars to constrain ultralight scalars with Yukawa couplings to neutrons

Rotational Superradiance has been well studied in Black Holes,

and

[e.g., Brito, et al., 2015]

applied to constrain new ultralight particles,

[e.g., Arvanitaki, et al., 2009, 2015]

BUT

these constraints are highly sensitive to the (difficult-to-measure) BH rotation rate

and

superradiance can occur in any rotating system with dissipation

[Zel'dovich, 1971]

SO

we consider superradiance in millisecond pulsars

to constrain ultralight scalars with Yukawa couplings to neutrons

Non-axisymmetric objects can radiate by multipole radiation.

Non-axisymmetric objects can radiate by multipole radiation.

Non-axisymmetric objects can radiate by multipole radiation.

Non-axisymmetric objects can radiate by multipole radiation.

What if the object is axisymmetric?

Non-axisymmetric objects can radiate by multipole radiation.

What if the object is axisymmetric?

Internal degrees of freedom (e.g., phonons) can break axisymmetry and provide coupling

Example: photons can excite oscillations in a star

The absorption process demonstrates: this matrix element exists.

Example: photons can excite oscillations in a star

conserve energy & angular momentum

$$\Rightarrow E' = m\Omega - E_{\gamma} > 0$$

phase space

conserve energy & angular momentum

$$\Rightarrow E' = m\Omega - E_{\gamma} > 0$$

phase space

"Superradiance condition"

Placing Bounds with Superradiance

Placing Bounds with Superradiance

exponential growth

Bound state ·

Star of ${\bf mass}\ M$

 ω, m

Placing Bounds with Superradiance

Scalar with mass μ and energy $\omega\approx\mu$ in gravitational bound state with azimuthal angular momentum m

angular momentum in (ω, m) mode after time t

$$(m\hbar)e^{\Gamma t}\gtrsim MR^2\Omega$$

initial stellar angular momentum

Placing Bounds with Superradiance

Superradiance Rate

Scalar Ψ with mass μ , interacting with medium moving at v^{α}

$$\Box \Psi + \mu^2 \Psi + C v^{\alpha} \nabla_{\alpha} \Psi + V_{\text{eff}}(\Psi) = 0$$

[Zel'dovich, 1971]

Superradiance Rate

Scalar Ψ with mass μ , interacting with medium moving at v^{α}

$$\Box \Psi + \mu^2 \Psi + C v^{\alpha} \nabla_{\alpha} \Psi + V_{\text{eff}}(\Psi) = 0$$

[Zel'dovich, 1971]

Superradiance Rate

Scalar Ψ with mass μ , interacting with medium moving at v^{α}

$$\Box\Psi+\mu^2\Psi+Cv^\alpha\nabla_\alpha\Psi+V_{\rm eff}(\Psi)=0$$

$$\Psi\propto e^{\Gamma t/2} \int {\rm medium\ rotating\ at\ }\Omega$$
 [Zel'dovich, 1971]

Superradiance Rate:
$$\Gamma = \frac{(m\Omega - \omega)}{C}$$
 Related to medium-at-rest absorption rate

Absorption is only nonzero in the medium.

Superradiance rate depends on overlap of scalar with medium.

"hydrogenic"
$$\psi_{nlm} \sim \frac{r^l}{a_0^{3/2+l}} e^{-\frac{r}{na_0}}$$
 scalar wavefunction:

Superradiance rate depends on overlap:

$$\Gamma \propto \int_{\text{star}} d^3r |\psi_{nlm}|^2 \sim \left(\frac{R}{a_0}\right)^{2l+3}$$

"hydrogenic"
$$\psi_{nlm} \sim \frac{r^l}{a_0^{3/2+l}} e^{-\frac{r}{na_0}}$$
 scalar wavefunction:

Superradiance rate depends on overlap:

$$\Gamma \propto \int_{\text{star}} d^3r |\psi_{nlm}|^2 \sim \left(\frac{R}{a_0}\right)^{2l+3}$$

Superradiance condition: $\ m\Omega - \mu > 0 \ \ (|m| \leq l)$

"hydrogenic"
$$\psi_{nlm} \sim \frac{r^l}{a_0^{3/2+l}} e^{-\frac{r}{na_0}}$$
 scalar wavefunction:

Superradiance rate depends on overlap:

$$\Gamma \propto \int_{\text{star}} d^3 r |\psi_{nlm}|^2 \sim \left(\frac{R}{a_0}\right)^{2l+3}$$

Superradiance condition: $m\Omega - \mu > 0$ $(|m| \le l)$

$$\mu \lesssim \Omega$$

Gravitational coupling is weak

large Bohr radius, small overlap

"hydrogenic"
$$\psi_{nlm} \sim \frac{r^l}{a_0^{3/2+l}} e^{-\frac{r}{na_0}}$$
 scalar wavefunction:

Superradiance rate depends on overlap:

$$\Gamma \propto \int_{\text{star}} d^3 r |\psi_{nlm}|^2 \sim \left(\frac{R}{a_0}\right)^{2l+3}$$

Superradiance condition: $m\Omega - \mu > 0$ $(|m| \le l)$

$$\mu \lesssim \Omega$$

Gravitational coupling is weak

large Bohr radius, small overlap

$$\mu \gtrsim \Omega$$

SR requires large m, hence large l

large Bohr radius, small overlap

"hydrogenic"
$$\psi_{nlm} \sim \frac{r^l}{a_0^{3/2+l}} e^{-\frac{r}{na_0}}$$
 scalar wavefunction:

Superradiance rate depends on overlap:

$$\Gamma \propto \int_{\text{star}} d^3r |\psi_{nlm}|^2 \sim \left(\frac{R}{a_0}\right)^{2l+3}$$

Superradiance condition: $\ m\Omega - \mu > 0 \ \ (|m| \leq l)$

$$m\Omega - \mu > 0$$

$$(|m| \leq l)$$

$$\mu \lesssim \Omega$$

Gravitational coupling is weak

large Bohr radius, small overlap

$$\mu \sim \Omega$$

Strongest superradiance

$$\mu \gtrsim \Omega$$

SR requires large m, hence large llarge Bohr radius, small overlap

"hydrogenic"
$$\psi_{nlm} \sim \frac{r^l}{a_0^{3/2+l}} e^{-\frac{r}{na_0}}$$
 scalar wavefunction:

Superradiance rate depends on overlap:

$$\Gamma \propto \int_{\text{star}} d^3r |\psi_{nlm}|^2 \sim \left(\frac{R}{a_0}\right)^{2l+3} \propto \mu^{4l+6} \sim \Omega^{4l+6}$$

Superradiance condition:
$$\ m\Omega - \mu > 0 \ \ (|m| \leq l)$$

$$\mu \lesssim \Omega$$

Gravitational coupling is weak

large Bohr radius, small overlap

$$\mu \sim \Omega$$

Strongest superradiance

$$\mu \gtrsim \Omega$$

SR requires large m, hence large llarge Bohr radius, small overlap

 \Rightarrow bounds are a strong function of Ω .

How do scalars couple to the star?

QCD Axion:

$$\epsilon \sim \theta_{\rm eff} \frac{m_n}{f_a} \sim \frac{{\rm GeV}}{f_a}$$

How do scalars couple to the star?

Scalars can be absorbed by exciting phonons.

$$C_{nlm} = \operatorname{Im} \left(\begin{array}{c} \psi_{nlm} & \psi_{nlm} \\ k' & k' \end{array} \right) \qquad \begin{array}{c} \text{Intermediate state can decay by} \\ \text{gravitational wave emission} \\ \\ = \operatorname{Im} \left(\sum_{k'} \langle k, \psi_{nlm} | H_{\mathrm{int}} | k' \rangle \frac{1}{E - E_{k'} + i \Gamma_{k'}} \langle k' | H_{\mathrm{int}} | k, \psi_{nlm} \rangle \right) \end{array}$$

Absorption rate:

phonon decay rate (grav. radiation)

$$C_{nlm} \sim \epsilon^2 \left(\frac{\sqrt{T/\omega_{l'm'}}}{\sqrt{2m_n\omega_{l'm'}}} \right)^2 \left| \int_S d^3 \mathbf{r} \, n(\mathbf{r}) \frac{\nabla \psi_{nlm}}{\sqrt{2\mu}} \cdot \mathbf{y}_{l'm'}(\mathbf{r}) \right|^2 \left(\frac{\Gamma_{l'm'}}{(\mu - \omega_{l'm'})^2} \right)$$
 phonon wavefunction

enhanced by thermal phonon amplitude

enhanced by neutron number density

Absorption rate:

phonon decay rate (grav. radiation)

Absorption rate: phonon decay rate (grav. radiation)
$$C_{nlm} \sim \epsilon^2 \left(\frac{\sqrt{T/\omega_{l'm'}}}{\sqrt{2m_n\omega_{l'm'}}} \right)^2 \left| \int_S d^3 \mathbf{r} \, n(\mathbf{r}) \frac{\nabla \psi_{nlm}}{\sqrt{2\mu}} \cdot \mathbf{y}_{l'm'}(\mathbf{r}) \right|^2 \left(\frac{\Gamma_{l'm'}}{(\mu - \omega_{l'm'})^2} \right)$$
 phonon wavefunction

enhanced by thermal phonon amplitude

enhanced by neutron number density

Superradiance Rate:

$$\Gamma_{nlm} pprox \frac{(m\Omega - \mu)}{\mu} C_{nlm}$$

- \bullet Only modes with $\,m>\omega/\Omega\,$ are superradiant
- Azimuthal asymmetries in the system can cause mixing with non-superradiant modes, with $m' < \omega/\Omega$.

- \bullet Only modes with $\,m>\omega/\Omega\,$ are superradiant
- Azimuthal asymmetries in the system can cause mixing with non-superradiant modes, with $m'<\omega/\Omega$.

- \bullet Only modes with $\,m>\omega/\Omega\,$ are superradiant
- Azimuthal asymmetries in the system can cause mixing with non-superradiant modes, with $m'<\omega/\Omega$.

- \bullet Only modes with $\,m>\omega/\Omega\,$ are superradiant
- Azimuthal asymmetries in the system can cause mixing with non-superradiant modes, with $m'<\omega/\Omega$.
- Most dangerous asymmetries:
 - Centrifugal bulge + Free precession wobble
 - Elastic scattering off neutrons (Yukawa interaction)

- \bullet Only modes with $\,m>\omega/\Omega\,$ are superradiant
- Azimuthal asymmetries in the system can cause mixing with non-superradiant modes, with $m'<\omega/\Omega$.
- Most dangerous asymmetries:
 - Centrifugal bulge + Free precession wobble
 - Elastic scattering off neutrons (Yukawa interaction)
 - Tidal forces from companion
 - Gravitational perturbation

 ψ_{nlm}

Constraints

PSR J1748–2446ad, 716 Hz Constraints from ψ_{211} (blue) and ψ_{322} (orange)

QCD axion: $\epsilon \sim \theta_{\rm eff} \frac{m_n}{f_a} \sim \frac{{\rm GeV}}{f_a}$ $\mu \sim \Lambda_{\rm QCD}^2/f_a$

Torsion balance constraints

$$\epsilon^2 \sim Gm_n^2$$

Constraints

Constraints from ψ_{322} :

642 Hz (blue), 716 Hz (orange), 1200 Hz (green)

QCD axion: $\epsilon \sim \theta_{\rm eff} \frac{m_n}{f_a} \sim \frac{{
m GeV}}{f_a}$ $\mu \sim \Lambda_{\rm QCD}^2/f_a$

Torsion balance constraints

$$\epsilon^2 \sim Gm_n^2$$

Conclusions

- Bounds from superradiance are a strong function of the rotation rate
- Superradiance can be efficient in millisecond pulsars
- Depending on the pulsar equation of state, Planck-scale
 QCD axions can be probed and excluded
- Other interactions could produce similar effects, constraining other particles