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Internal degrees of freedom (e.g., phonons)
can break axisymmetry and provide coupling
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Some stellar excitation
(e.g. eddy currents, phonons)

The absorption process demonstrates:
this matrix element exists.
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Rotational Superradiance

Energy for radiation
comes from rotation  coupling /
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Radiation is kinematically allowed if £’ > 0
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“Superradiance condition”
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Star of mass M

Scalar with mass 11 and energy w ~
In gravitational bound state

with azimuthal angular momentum m

\

(M) — w > 0)
Bound state =% exponential growth
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Placing Bounds with
Superradiance

Q—»Q

W, m

angular momentum in (w,m)
mode after time ¢

1 M 2Q)
= Z — R = ruled out
N 3

initial stellar angular momentum

superradiance rate for (w, m) mode
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o
Superradiance Rate

Scalar ¥ with mass u, interacting with medium moving at v®

Co*V W

U ¢ eFt/2 / medium rotating at 2

[Zel’dovich, 1971]

(mﬂ D W) C Related to medium-at-rest

Superradiance Rate: | — absorption rate
W

Absorption is only nonzero in the medium.

Superradiance rate depends on overlap of scalar with medium.
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SR rate is sensitive to

“nydrogenic” W N
. nilm
scalar wavefunction:

Dy - GM p?

Superradiance rate depends on overlap:

T / dST‘wnlm‘Z N <_> x /.L4l+6 N Q4l—|—6
star ao

Superradiance condition: mS) — w > 0 (m| <)

TRY: p~ €2 PR
Gravitational coupling is weak Strongest SR requires large 1M, hence large [
large Bohr radius, small overlap superradiance large Bohr radius, small overlap

= bounds are a strong function of €.
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Superradiance in Pulsars

How do scalars couple to the star?

QCD Axion:
Any scalar or m eV
(CP-violating) psuedoscalar \Ijnn € ~o Qeﬁ_” ~ 7
a

Scalars can be absorbed by exciting phonons.

¢nlm wnlm
Qs 4

C T ( T X Intermediate state can decay by
nlm — 111 /
e

'\ ) gravitational wave emission
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Superradiance in Pulsars

Absorption rate: phonon decay rate (grav. radiation)

2 2 |L|
Cnlm N 62 ( \/T/wl’m’ ) /SdBI'TL(I') v7ﬁbnlm Y (I‘) ( |y )

\/anwl’m’ V 21 (,LL — wl’m’)z
; phonon wavefunction
enhanced by thermal enhanced by neutron
phonon amplitude number density
Superradiance (mﬂ o :u)

Rate: Ffn,l’m ~ 10 Cnlm
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* Most dangerous asymmetries: ™, Y100

e (Centrifugal bulge + Free precession wobble

» FElastic scattering off neutrons (Yukawa interaction)
¢100
 Tidal forces from companion y

* Qravitational perturbation
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Conclusions

e Bounds from superradiance are a strong function of the
rotation rate

e Superradiance can be efficient in millisecond pulsars

e Depending on the pulsar equation of state, Planck-scale
QCD axions can be probed and excluded

e Other interactions could produce similar effects,
constraining other particles



