From stringy vacua with particle physics spectrum to the effective action - exemplified by a non-factorisable orientifold -

Gabriele Honecker

Cluster of Excellence PRISMA & Institut für Physik, JG U Mainz

based on JHEP 1608 (2016) 062 & Nucl.Phys. B926 (2018) 112-166 with Mikel Berasaluce-González & Alexander Seifert

Planck 2018 in Bonn, 24 May 2018

Motivation: String Phenomenology & Cosmology

Status quo: string theory \equiv unification of all interactions

- string pheno: (very roughly)
 - ▶ many compact CY and T^6/Γ models with SM-like spectrum topology \leftrightarrow chiral matter \leadsto machine learning techniques

see Vaudrevange's talk

- ► rudimentary results on effective field theory from dim. reduction of SUGRA & DBI $\rightsquigarrow S_{EH} \& 1/g_{II(1)/SU(N)}^2$
 - depends on size & shape moduli of compact space, M_{string}
 - already Yukawas challenging only computable with CFT techniques on T⁶/Γ
 see Liyanage's talk
- string cosmo: (very roughly)
 - assume that particle physics sector is localized & OK ?
 - choose 'global' CY geometry to explain inflation ?
 - 'dial' terms in the action for moduli stabilisation

see Valenzuela's, Grimm's, Westphal's talks

moduli dep. of action relevant to particle physics & cosmology

Outline

- ▶ Motivation √
- Stringy vacua of particle physics
 - ► SM & new physics matter
 - effective action
 - example: non-factorisable orbifold
- Interplay with cosmology
 - ► constraints on moduli from 1/g²,1-loop
- Conclusions

Stringy vacua of particle physics

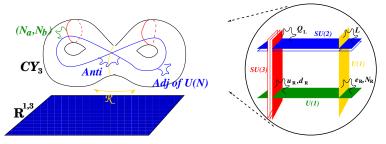
Stringy Vacua of Particle Physics: Matter Sector

Type II string theories: - and dual het. SO(32) -

▶ closed strings ~> gravity, moduli

& some U(1)'s related to internal symmetries

▶ open strings $\leadsto \prod U(N)$ groups & matter in Bifund & Adj orientifolding: $U(N) \to SO(2N)$ or USp(2N) & (Anti)Sym



- restricts ways to realise the SM & new physics
 - ▶ two endpoints ~> constraints on reps.
 - at least 3 kinds of D-branes
 - all couplings determined by D-brane configuration

Stringy Vacua of Particle Physics cont'd

Stringy consistency conditions:

- fix D-brane configuration dependent on CY or T^6/Γ background
 - complete (massless) matter spectrum determined
- ensure absence of all gauge & gravitational anomalies
 - ▶ some U(1)'s acquire mass
 - ▶ some \mathbb{Z}_n 's $\subset U(1)$'s can survive \longrightarrow selection rules on couplings
- SUSY ensures stability of vacuum @ M_{string}
 - requires SUSY below M_{string}

above relies on:

topology of compact space

but more info on geometry required for:

- ightharpoonup Yukawas $\propto e^{-{\sf Area}_{{\sf xyz}}}$
- $ightharpoonup 1/g_{x, ext{tree}}^2 \propto ext{Vol}(\Pi_X)$ D_x -brane extends along Π_X in compact space
- ▶ ... higher loop-orders and *n*-point couplings $\rightarrow \underline{all}$ kinds of moduli involved!

Stringy Vacua of Particle Physics: Effective Action

formal dimensional reduction of SUGRA & DBI:

▶ for D6-branes: $\frac{1}{g_{\rm tree}^2} \propto \frac{{\rm Vol}(\Pi_3)}{\sqrt{{\rm Vol}(CY_3)}} \frac{M_{\rm Planck}}{M_{\rm string}}$ (compl. str. moduli)

beyond this reduction:

- ▶ only possible by CFT techniques $\leftrightarrow T^6/\Gamma$ or 'non-geometric'
- ► Yukawas from disks w/ 3 vertex op. @ boundary (Kähler moduli)
- $\frac{1}{g_{1-\text{loop}}^2}$ also from magnetically gauged vacuum partition fct.
 - for D6-branes at angles ϕ : $\sim \ln\left(\frac{\Gamma(\phi)}{\Gamma(1-\phi)}\right)$ (compl. str. moduli)
 - ▶ for parallel D6-branes: KK & winding sums (Kähler moduli)

$$\begin{split} \Lambda_{0,0}(v) &\equiv -\frac{1}{4\pi} \ln(\eta(iv)) \stackrel{v>1}{\longrightarrow} \frac{v}{48} \\ \Lambda_{\tau,\sigma}(v) &\equiv -\frac{1}{4\pi} \ln\!\left(e^{-\frac{\pi\sigma^2v}{4}} \frac{\left|\vartheta_1(\frac{\tau-i\sigma v}{2},iv)\right|}{\eta(iv)}\right) \stackrel{v>1}{\longrightarrow} \frac{\left[3(1-\sigma)^2-1\right]v}{48} - \delta_{\sigma,0} \frac{\ln[2\sin(\frac{\pi\tau}{2})]}{4\pi} \end{split}$$

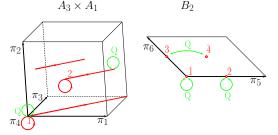
linear in Kähler modulus v

• formulas a priori for factorisations $T^6 = (T^2)^3$

Example: Non-Factorizable Orientifold T^6/\mathbb{Z}_4

Why \mathbb{Z}_4 on $A_3 \times A_1 \times B_2$?

- ▶ access to compact backgrounds beyond $(T^2)^3/\Gamma$
- less twisted moduli require stabilisation: $(h_{11}^{\mathbb{Z}_2}, h_{21}^{\mathbb{Z}_2}) = (6, 2)$ vs. (10, 6) for $B_2 \times (A_1)^2 \times B_2$
- $ightharpoonup \mathbb{Z}_4$ action given by Coxeter element on Lie algebra lattices



- ► construction of 3-cycles, SUSY & stringy consistency ✓
 - only 2 or 4 generation models
 - but good playground

 \rightsquigarrow non-factorisable \mathbb{Z}_6' on $D_4 \times A_2$ has 3 generation models

Example: Non-Factorizable Orientifold cont'd

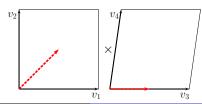
Example: 4-generation model

- ► $SU(4)_a \times USp(2)_b \times USp(2)_c \times USp(4)_h$
- $ightharpoonup [C] = 4 \times [(4, \overline{2}, 1, 1) + (\overline{4}, 1, 2, 1)]$

 \nwarrow from topological intersection #

$$[V] = (15, 1, 1, 1) + (1, 3S, 1, 1) + (1, 1, 3S, 1) + 2 \times (1, 1, 1, 10S) + (1, 1, 1, 6A) + (5 \times (6A, 1, 1, 1) + (10S, 1, 1, 1) + c.c.) + 3 \times (1, 2, 2, 1) + (1, 2, 1, 4) + (1, 1, 2, 4)$$

- ▶ CFT methods known for factorisation $(T^2)^3$
- $(A_3 \times A_1) \times B_2 \simeq (T^2 \times T^2) \times T^2$ by shift symmetry



Example: Non-Factorizable Orientifold cont'd

▶ **@ tree-level:**
$$\frac{16\pi^2}{g_{x,\text{tree}}^2} = \frac{M_{\text{Planck}}}{M_{\text{string}}} \times \left\{ \begin{array}{l} 2\sqrt{u_2} & \text{for } x = a \\ \frac{1}{2\sqrt{u_2}} & \text{for } x = b,c,h \end{array} \right.$$

▶ 1-loop threshold corrections:

$$\begin{split} \Delta_{SU(4)_a} = & 4 \big(\widetilde{\Delta}_{aa}^{\text{total}} + \widetilde{\Delta}_{aa'}^{\text{total}} \big) + 2 \widetilde{\Delta}_{ab}^{\text{total}} + 2 \widetilde{\Delta}_{ac}^{\text{total}} + 4 \widetilde{\Delta}_{ah}^{\text{total}} + \Delta_{a,\Omega\mathcal{R}}^{\text{total}} + \Delta_{a,\Omega\mathcal{R}}^{\text{total}} \\ = & - 4 \Lambda(0,0,\mathsf{v}_1,2) - 4 \Lambda(1,0,\mathsf{v}_1,2) + 4 \widehat{\Lambda}(1,0,\mathsf{v}_1,4) \\ & - 16 \Lambda(0,0,\mathsf{v}_2,u_2) - 16 \Lambda(1,0,\mathsf{v}_2,u_2) + 8 \widehat{\Lambda}(0,0,\mathsf{v}_2,2u_2) + 8 \widehat{\Lambda}(1,0,\mathsf{v}_2,2u_2) \\ & - 4 \Lambda(0,0,\mathsf{v}_3,2) - 4 \Lambda(1,1,\mathsf{v}_3,2) + 4 \widehat{\Lambda}(1,1,\mathsf{v}_3,4) \end{split}$$

$$\Delta_{USp(2)_{b/c}} = - 4 \Lambda(0,0,\mathsf{v}_1,2) - 3 \Lambda(0,0,\mathsf{v}_2,1/u_2) + 2 \widehat{\Lambda}(0,0,2\mathsf{v}_2,2/u_2) - 4 \Lambda(0,0,\mathsf{v}_3,2) + \frac{\ln 2}{2} \\ \Delta_{USp(4)_h} = - 4 \Lambda(1,0,\mathsf{v}_1,2) - 2 \Lambda(0,0,\mathsf{v}_2,1/u_2) + 2 \widehat{\Lambda}(0,0,2\mathsf{v}_2,2/u_2) - 4 \Lambda(1,1,\mathsf{v}_3,2) + \frac{\ln 2}{2} \end{split}$$

 $\widehat{\Lambda}(\sigma, au,\ldots)$ from Möbius strip - exact shape unknown

Example: Pati-Salam w/ 4 Gen. cont'd: Gauge Thresholds

- (unrealistic) assumption $\widehat{\Lambda}(\sigma, \tau, ...) = \Lambda(0, 0, ...)$ for $SU(4)_a$
- universal Kähler modulus $v \equiv v_{i=1,2,3}$

$$USp(2)_{b/c}$$
, $USp(4)_h$

 \rightarrow enhancement/reduction of $\frac{1}{\sigma^2}$ possible: fct.(Kähler modulus ν)

Interplay with cosmology

Interplay with cosmology

Just to mention...

▶ QCD axion from open strings ~→ EFT determined trans-Planckian regime **not** in SUGRA approximation

Here more on hierarchies of scales:

► tree-level:
$$\frac{16\pi^2}{g_{x,\text{tree}}^2} = \frac{M_{\text{Planck}}}{M_{\text{string}}} \times \left\{ \begin{array}{l} 2\sqrt{u_2} & \text{for } x = a \\ \frac{1}{2\sqrt{u_2}} & \text{for } x = b, c, h \end{array} \right.$$

with
$$u_2 \propto \frac{R_1}{R_3}$$
 - e.g. hierarchy $M_{\text{Planck}} \gg M_{\text{string}}$, $R_1 \ll R_3$ (\checkmark)

▶ 1-loop threshold correction:

$$v_2 \propto R_1 R_3 > 1$$

$$\Delta_{SU(4)_a} \rightarrow \frac{2\pi}{3} \Big((1 - 2c_{1,0}^{(1)}) v_1 - 4c_{1,0}^{(2)} v_2 + (1 - 2c_{1,1}^{(3)}) v_3 \Big) + \text{const.}$$

$$\Delta_{USp(2)_{b/c}} \to \frac{4\pi}{3} (v_1 - \frac{v_2}{4} + v_3) + \text{const.}$$

$$\Delta_{USp(4)_h} \to -\frac{2\pi}{3} (v_1 + v_2 + v_3) + \text{const.}$$

 \rightarrow upper bound on LARGE volume scenario: $1/g_{b.c.h.1-loop}^2 \leqslant 0$ 44

Conclusions & Outlook

Conclusions:

- ▶ moduli can be
 - absent by construction (here: twisted ones)
 - ▶ stabilised by D-branes → FI terms
- ▶ no separation of particle ↔ cosmology properties of string vacua due to loop effects

Outlook:

- rigorous derivation of stringy EFT needed
- popular simple cosmological scenarios need to be reconsidered