Accidental Peccei-Quinn symmetry in a model of flavour

Fredrik Björkeroth¹

in collaboration with: Eung Jin Chun², Stephen F. King³

¹INFN-LNF, ²KIAS, ³University of Southampton

Planck 2018, 23.05.18

Punchline: axions are flavons!

In a realistic model of a flavoured axion, knowledge of masses and mixings fixes all axion properties.

```
Based on work in

PLB 777 (2018) 428-434

[1711.05741 [hep-ph]]

+

work in progress
```

Ingredients in a standard PQ solution

- Global $U(1)_{PQ}$ symmetry with chiral anomaly
- Complex scalar field $\varphi \to \langle \varphi \rangle$ which breaks $U(1)_{PQ}$

 $U(1)_{PQ}$ does not need to be put in by hand!

 \rightarrow accidental PQ symmetry

We connected an accidental $U(1)_{PQ}$ to the flavons that control Yukawa structures

 \rightarrow the axion is <code>flavoured</code>

See also

- Flaxion [Ema, Hamaguchi, Moroi, Nakayama '16]
- Axiflavon [Calibbi, Goertz, Redigolo, Ziegler, Zupan '16]

A unified model of flavour: "A to Z"

- Pati-Salam gauge group $SU(4)_C \times SU(2)_L \times SU(2)_R$
- A₄ family symmetry
- \mathbb{Z}_N family/shaping symmetries
- Supersymmetry

Can accommodate all quarks/leptons, masses + mixings

Features

Basic field content

Field	PS	A_4	
$ \begin{array}{c} F \\ F_{1,2,3}^c \\ \phi_i^f \end{array} $	(4, 2, 1) (4, 1, 2) 1	3 1 3	

- Yukawa couplings become dynamical: $y_{ij}FF^cH \rightarrow \frac{\langle \phi_i \rangle}{M}F_iF_j^cH$
- \mathcal{L} has accidental $U(1)_{PQ}$ with generation-dependent PQ charges $X(f_i)$: $X(F_1^c) = 2, X(F_2^c) = 1, X(F_3^c) = 0$
- Physical axion lives inside (multiple) ϕ_i^f
- $\circ\,$ PQ scale: $v_{PQ}\sim\langle\phi_2^u\rangle\sim y_cM_{\rm GUT}\sim 10^{12-13}\,\,{\rm GeV}$

-

 $f_a \gtrsim 10^{12}$ GeV is close to cosmological upper bound

Dark matter axion? Mass: $m_a \sim 1 - 10 \mu \text{eV}$

Axion couplings to matter predicted by Yukawa structures

Flavour violation via axion interactions

Flavoured axions contribute to many flavour-violating decays (suppressed by v_{PQ})

Example: $K^+ \rightarrow \pi^+ a$ (e.g. NA62 experiment)

$$\operatorname{Br}(K^+ \to \pi^+ a) = \frac{1}{\Gamma(K^+)} \frac{|V_{21}^d|^2}{16\pi} \frac{m_K^3}{v_{PQ}^2} \left(1 - \frac{m_\pi^2}{m_K^2}\right)^3 |f_+(0)|^2$$

with $f_+(0) \approx 1$.

• Experiments [E787, E949] contrain the ratio

$$\frac{v_{PQ}}{|V_{21}^d|}\gtrsim 7\times 10^{11}~{\rm GeV}$$

 NA62 experiment predicts order of magnitude improvement in limit – approaching predicted range from model! Other interesting decays

•
$$\mu^+ \to e^+ a(\gamma)$$
 (e.g. MEG experiment)
• $K_L^0 \to \pi^0 a$ (e.g. KOTO, KLEVER)

 $\circ \ B^{\pm}
ightarrow K^{\pm}(\pi^{\pm}) a$ (e.g. Belle-II, LHCb)

Other searches

- Haloscopes (e.g. ADMX): searching for axion DM ADMX sensitive to predicted mass range ($m_a \sim$ a few μ eV)
- Helioscopes (e.g. CAST, IAXO) probing $g_{a\gamma}$ and g_{ae} $g_{a\gamma}$ resembles DFSZ axion

- 1. The great advantage of the unified approach is that predictions are *correlated* and *fixed*.
- 2. Once flavour observables are determined, all axion couplings are immediately known.
- 3. Potentially rich phenomenology, but heavy suppression by f_a .
- 4. No new scalar field is needed to accommodate axion already present in the theory!

Backup slides

Leptons

Observable	l	Data		Model		
	Central value	1σ range	Best fit	Interval		
θ_{12}^{ℓ} /°	33.57	$32.81 \rightarrow 34.32$	32.88	$32.72 \rightarrow 34.23$		
θ_{13}^{ℓ} /°	8.460	$8.310 \rightarrow 8.610$	8.611	$8.326 \rightarrow 8.882$		
θ_{23}^{ℓ} /°	41.75	$40.40 \rightarrow 43.10$	39.27	$37.35 \rightarrow 40.11$		
δ^{ℓ} /°	261.0	$202.0 \rightarrow 312.0$	242.6	$231.4 \rightarrow 249.9$		
$y_e / 10^{-5}$	1.004	$0.998 \rightarrow 1.010$	1.006	0.911 ightarrow 1.015		
y_{μ} /10 ⁻³	2.119	$2.106 \rightarrow 2.132$	2.116	$2.093 \rightarrow 2.144$		
$y_{\tau} / 10^{-2}$	3.606	3.588 ightarrow 3.625	3.607	$3.569 \rightarrow 3.643$		
$\Delta m^2_{21} / 10^{-5} { m eV}^2$	7.510	$7.330 \rightarrow 7.690$	7.413	$7.049 \rightarrow 7.762$		
$\Delta m^2_{31} / 10^{-3} {\rm eV}^2$	2.524	$2.484 \rightarrow 2.564$	2.540	$2.459 \rightarrow 2.616$		
<i>m</i> ₁ /meV			0.187	0.022 ightarrow 0.234		
<i>m</i> ₂ /meV			8.612	$8.400 \rightarrow 8.815$		
<i>m</i> ₃ /meV			50.40	$49.59 \rightarrow 51.14$		
$\sum m_i$ /meV		< 230	59.20	$58.82 \rightarrow 60.19$		
α_{21}			10.4	-38.0 ightarrow 70.1		
α_{31}			272.1	$218.2 \rightarrow 334.0$		
<i>т_{ββ} /</i> meV			1.940	$1.892 \rightarrow 1.998$		

We set $\tan \beta = 5$, $M_{\rm SUSY} = 1$ TeV and $\bar{\eta}_b = -0.24$

Quarks

Observable		Data	Model		
	Central value	l value 1σ range		Interval	
$\theta_{12}^q /^\circ$	13.03	12.99 ightarrow 13.07	13.04	12.94 ightarrow 13.11	
θ_{13}^q / \circ	0.1471	$0.1418 \rightarrow 0.1524$	0.1463	$0.1368 \rightarrow 0.1577$	
$\theta_{23}^q /^\circ$	1.700	1.673 ightarrow 1.727	1.689	1.645 ightarrow 1.753	
δ^q / \circ	69.22	66.12 ightarrow 72.31	68.85	$63.00 \rightarrow 75.24$	
$y_u / 10^{-6}$	2.982	$2.057 \rightarrow 3.906$	3.038	1.098 ightarrow 4.957	
$y_c / 10^{-3}$	1.459	$1.408 \rightarrow 1.510$	1.432	1.354 ightarrow 1.560	
Уt	0.544	$0.537 \rightarrow 0.551$	0.545	$0.530 \rightarrow 0.558$	
$y_d / 10^{-5}$	2.453	$2.183 \rightarrow 2.722$	2.296	$2.181 \rightarrow 2.966$	
$y_s / 10^{-4}$	4.856	$4.594 \rightarrow 5.118$	4.733	$4.273 \rightarrow 5.379$	
Уь	3.616	$3.500 \rightarrow 3.731$	3.607	$3.569 \rightarrow 3.643$	

We set $\taneta=$ 5, $M_{
m SUSY}=$ 1 TeV and $ar\eta_b=-0.24$

Input parameters

Parameter	Value
$a/10^{-5} b/10^{-3} c y_0^0/10^{-5} y_5^0/10^{-4} y_b^0/10^{-2} c_{13}/10^{-3} c_{23}/10^{-2} B$	$\begin{array}{c} 1.246 \ e^{4.047i}\\ 3.438 \ e^{2.080i}\\ -0.545\\ 3.053 \ e^{4.816i}\\ 3.560 \ e^{2.097i}\\ 3.607\\ 6.215 \ e^{2.434i}\\ 2.888 \ e^{3.867i}\\ 10.20 \ e^{2.777i}\\ 5.002\end{array}$
B x	10.20 e ^{2.7777} 5.880

Value		
3.646		
1.935		
1.151		
2.592		
2.039		

Full Yukawa/mass superpotential

$$\begin{split} W_{F}^{\text{eff}} &= (F \cdot h_{3})F_{3}^{c} + \frac{(F \cdot \phi_{1}^{u})h_{u}F_{1}^{c}}{\langle \Sigma_{u} \rangle} + \frac{(F \cdot \phi_{2}^{u})h_{u}F_{2}^{c}}{\langle \Sigma_{u} \rangle} \\ &+ \frac{(F \cdot \phi_{1}^{d})h_{d}F_{1}^{c}}{\langle \Sigma_{15} \rangle} + \frac{(F \cdot \phi_{2}^{d})h_{15}^{d}F_{2}^{c}}{\langle \Sigma_{d} \rangle} + \frac{(F \cdot \phi_{1}^{u})h_{d}F_{1}^{c}}{\langle \Sigma_{d} \rangle} \\ W_{\text{Maj}}^{\text{eff}} &= \frac{\overline{H^{c}}\overline{H^{c}}}{\Lambda} \left(\frac{\xi^{2}}{\Lambda^{2}}F_{1}^{c}F_{1}^{c} + \frac{\xi}{\Lambda}F_{2}^{c}F_{2}^{c} + F_{3}^{c}F_{3}^{c} + \frac{\xi}{\Lambda}F_{1}^{c}F_{3}^{c}\right) \end{split}$$

Notes

Sample diagrams

Field	G _{PS}	A_4	\mathbb{Z}_5	\mathbb{Z}_3	\mathbb{Z}_5'	R	$U(1)_{PQ}$
F	(4, 2, 1)	3	1	1	1	1	0
$F_{1,2,3}^{c}$	(4, 1, 2)	1	$lpha$, $lpha^3$, 1	eta,eta^2 , 1	γ^3 , γ^4 , 1	1	-2, -1, 0
$\overline{H^c}$	(4, 1, 2)	1	1	1	1	0	0
H^{c}	(4, 1, 2)	1	1	1	1	0	0
$\phi_{1,2}^{u}$	(1, 1, 1)	3	$lpha^4$, $lpha^2$	eta^2 , eta	γ^2 , γ	0	2,1
$\phi_{1,2}^{d'}$	(1, 1, 1)	3	α^3 , α	eta^2 , eta	γ^2 , γ	0	2,1
h ₃	(1, 2, 2)	3	1	1	1	0	0
hu	(1, 2, 2)	$1^{\prime\prime}$	α	1	1	0	0
h_{15}^{u}	(15, 2, 2)	1	α	1	1	0	0
h _d	(1, 2, 2)	1'	α^3	1	1	0	0
h_{15}^{d}	(15, 2, 2)	1'	$lpha^4$	1	1	0	0
Σμ	(1, 1, 1)	$1^{\prime\prime}$	α	1	1	0	0
Σ_d	(1, 1, 1)	1'	α^3	1	1	0	0
Σ_{15}^d	(15, 1, 1)	1'	α^2	1	1	0	0
ξ	(1, 1, 1)	1	$lpha^4$	β^2	γ^2	0	2

Discrete \mathbb{Z}_N symmetries

 $\circ \mathbb{Z}_5$

Shaping symmetry of original A to Z model Ensures CSD(4)

 $\circ \mathbb{Z}_3$

Ensures PQ symmetry at renormalisable level Forbids most off-diagonal terms in $Y^{d,e}$ (new!)

 $\circ \mathbb{Z}'_5$

Protects PQ symmetry to sufficient order

Yukawa and mass matrices

$$Y^{u} = Y^{\nu} = \begin{pmatrix} 0 & b & \epsilon_{13}c \\ a & 4b & \epsilon_{23}c \\ a & 2b & c \end{pmatrix} \qquad Y^{d} = \begin{pmatrix} y^{0}_{d} & 0 & 0 \\ By^{0}_{d} & y^{0}_{s} & 0 \\ By^{0}_{d} & 0 & y^{0}_{b} \end{pmatrix}$$
$$Y^{e} = \begin{pmatrix} -(y^{0}_{d}/3) & 0 & 0 \\ By^{0}_{d} & xy^{0}_{s} & 0 \\ By^{0}_{d} & 0 & y^{0}_{b} \end{pmatrix} \qquad M_{R} = \begin{pmatrix} M_{1} & 0 & M_{13} \\ 0 & M_{2} & 0 \\ M_{13} & 0 & M_{3} \end{pmatrix}$$

Neutrino matrix after seesaw,

$$m^{\nu} = m_a \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix} + m_b e^{i\eta} \begin{pmatrix} 1 & 4 & 2 \\ 4 & 16 & 8 \\ 2 & 8 & 4 \end{pmatrix} + m_c e^{i\xi} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Constrained sequential dominance (CSD) [King '99, '00, '02]

- $\circ\,$ SD originally devised for neutrinos:
 - 1) $N_{
 m atm}
 ightarrow$ atmospheric mass $m_{
 u_3}$ and mixing $heta_{23} \sim 45^\circ$
 - 2) $N_{
 m sol}
 ightarrow$ solar mass $m_{
 u_2}$ and solar+reactor mixing $heta_{12}, heta_{13}$
 - 3) $N_{
 m dec}$, if present, nearly decoupled from theory $o m_{
 u_1} \ll m_{
 u_{2,3}}$

CSD(n) with two neutrinos:

$$Y^{\nu} = \begin{pmatrix} 0 & b & * \\ a & nb & * \\ a & (n-2)b & * \end{pmatrix}, \qquad M_R \sim \operatorname{diag}(M_{\operatorname{atm}}, M_{\operatorname{sol}}, M_{\operatorname{dec}})$$

$$m^{\nu} = v^{2} Y^{\nu} M_{R}^{-1} (Y^{\nu})^{T}$$

= $m_{a} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix} + m_{b} \begin{pmatrix} 1 & n & n-2 \\ n & n^{2} & n(n-2) \\ n-2 & n(n-2) & (n-2)^{2} \end{pmatrix} + m_{c} \begin{pmatrix} * & * & * \\ * & * & * \\ * & * & * \end{pmatrix}$

- $\circ~$ In unified scenario, CSD is extended to the quarks!
- Consider n = 4 [King '13]. With Y^d diagonal,

$$Y^{u} = Y^{\nu} = \begin{pmatrix} 0 & b & * \\ a & 4b & * \\ a & 2b & * \end{pmatrix}$$

• To first approximation, Cabibbo angle

$$\theta_{12}^q \approx \frac{Y_{12}^u}{Y_{22}^u} \approx \frac{1}{4}$$

• This is compellingly close to the true value $\theta_{12}^q \approx 0.227$.

 $\circ~\mathsf{CSD}(4)$ achieved by A_4 triplet flavons ϕ

• Flavons acquire VEVs with particular alignments:

$$\begin{aligned} \langle \phi_1^u \rangle &= v_{\phi_1^u}(0, 1, 1), & \langle \phi_1^d \rangle &= v_{\phi_1^d}(1, 0, 0) \\ \langle \phi_2^u \rangle &= v_{\phi_2^u}(1, 4, 2), & \langle \phi_2^d \rangle &= v_{\phi_2^d}(0, 1, 0) \end{aligned}$$

• Example: first-generation up-type quarks

$$W \supset \frac{(F \cdot \phi_1^u) h_u F_1^c}{M} \to v_u \frac{v_{\phi_1^u}}{M} \left(F_1 F_2 F_3\right) \begin{pmatrix} 0\\1\\1 \end{pmatrix} F_1^c$$

• Alignments can be fixed by A₄ and orthogonality arguments, implemented by a superpotential

PQ charges

$$\begin{split} W_F^{\text{eff}} &\sim (F \cdot h_3) F_3^c + (F \cdot \phi_1^u) h_u F_1^c + (F \cdot \phi_2^u) h_u F_2^c \\ & 0 & 0 & 0 & 2 & 0 & -2 & 0 & 1 & 0 & -1 \\ & & + (F \cdot \phi_1^d) h_d F_1^c + (F \cdot \phi_2^d) h_{15}^d F_2^c + (F \cdot \phi_1^u) h_d F_1^c \\ & 0 & 2 & 0 & -2 & 0 & 1 & 0 & -1 & 0 & 2 & 0 & -2 \\ W_{\text{Maj}}^{\text{eff}} &\sim \overline{H^c} \overline{H^c} \left(\xi \ \xi \ F_1^c F_1^c + \xi \ F_2^c F_2^c + F_3^c F_3^c + \xi \ F_1^c F_3^c \right) \\ & 0 & 0 & 2 & 2 & -2 & 2 & -1 & -1 & 0 & 0 & 2 & -2 & 0 \end{split}$$

Notes

- $\circ~\ensuremath{\mathsf{PQ}}$ symmetry realised also at renormalisable level
- $\circ~$ Higgs sector completely neutral \rightarrow no GUT-scale PQ breaking
- $U(1)_{PQ}$ assignments unique
- Third family is neutral

Breaking $U(1)_{PQ}$

• $\phi_i^f \rightarrow \langle \phi_i^f \rangle \sim v_{\phi_1^f}$ breaks all discrete symmetries and $U(1)_{PQ}$ • PQ-breaking scale

$$v_{PQ}^2 = (N_a f_a)^2 = \sum_{\phi} x_{\phi}^2 v_{\phi}^2$$

• Dominated by largest VEV: $\langle \phi_2^u \rangle$ (related to charm mass)

Axion

$$a = \frac{1}{v_{PQ}} \sum_{\varphi} x_{\varphi} v_{\varphi} a_{\varphi}$$

Domain wall number

$$N_a \equiv \left| 6x_F + 2\sum_i x_{F_i^c} \right| = \left| 6(0) + 2(-2 + -1 + 0) \right| = 6$$

Protecting the PQ symmetry

Consider terms like

$$\frac{\{\phi\}^n}{M_P^n}W$$

These generate a PQ-breaking axion mass

$$m_*^2 \sim m_{3/2}^2 \frac{v_{PQ}^{n-2}}{M_P^{n-2}}$$

[Holman et al '92] [Kamionkowski, March-Russell '92] [Barr, Seckel '92]

We require $m_*^2/m_a^2 < 10^{-10}$, where

$$m_a^2 \approx m_\pi^2 \frac{f_\pi^2}{f_a^2}$$

To protect our solution, we forbid all PQ-violating terms like $\{\phi\}^n$ up to n = 7 (or dim = 10)!

Phenomenology - Fit

Fitting to quark and lepton mixing data

Simple MCMC

• Minimise χ^2 to find best fit $\chi^2 = \sum_i \left(\frac{P(x_i) - \mu_i}{\sigma_i}\right)^2$

 Calculate 95% credible intervals (hpd)

$$W_{
m driving} = P_{1,2}^{u,d} \left(\bar{\phi}_{1,2}^{u,d} \phi_{1,2}^{u,d} - M^2 \right) + P_{\xi} \left(\bar{\xi} \xi - M^2 \right)$$
,

Field	G _{PS}	A_4	\mathbb{Z}_5	\mathbb{Z}_3	\mathbb{Z}_5'	R	$U(1)_{PQ}$
$ \begin{array}{c} \phi^u_{1,2} \\ \phi^d_{1,2} \\ \varsigma \end{array} $	(1, 1, 1) (1, 1, 1) (1, 1, 1)	3 3 1	α^4, α^2 α^3, α	β^2, β β^2, β β^2	γ^2, γ γ^2, γ γ^2^2	0 0	2, 1 2, 1
$\bar{\phi}^{u}_{1,2}$	(1, 1, 1) (1, 1, 1)	3	α α, α^3	β, β^2	γ^{3}, γ^{4}	0	-2, -1
$\left \begin{array}{c} \varphi_{1,2}^{3}\\ \xi \end{array} \right $	(1, 1, 1) (1, 1, 1)	3 1	α ⁻ , α ⁻ α	β,β² β	$\gamma^{\circ}, \gamma^{+}$ γ^{3}	0	-2, -1 -2

Yukawa matrices can be diagonalised by bi-unitary matrices $V_{L,R}^{u,d}$, $U_{L,R}^{e}$

$$\begin{split} Y^{u,\mathrm{diag}} &= V_L^u Y^u (V_R^u)^\dagger, \\ Y^{d,\mathrm{diag}} &= V_L^d Y^d (V_R^d)^\dagger, \\ Y^{e,\mathrm{diag}} &= U_L^e Y^e (U_R^e)^\dagger. \end{split}$$

We transform the fields by

$$Q \to (V_L^u)^{\dagger} Q,$$

$$d^c \to (V_R^d)^{\dagger} d^c,$$

$$u^c \to (V_R^u)^{\dagger} u^c.$$

Then $Y^u \to Y^{u, \text{diag}}$, $Y^d \to V_{\text{CKM}} Y^{d, \text{diag}}$, where $V_{\text{CKM}} = V_L^u (V_L^d)^{\dagger}$.