
Using tr and missing energy to search for new physics

Supervisors: Michaela Queitsch-Maitland and Krisztian Peters

Martha Elliott 08/2017

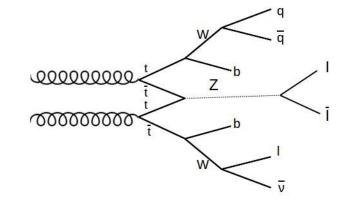
Motivation

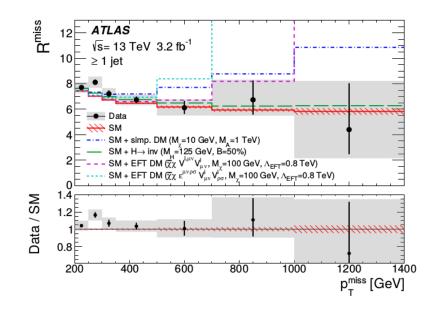
- We know that new phenomena in particle physics exists (dark matter, SUSY...) but we don't know where it might appear
- Top quarks are a good place to look due to their mass (strong coupling to Higgs boson or new scalar particles)
- Useful to test the feasibility of doing a general search for this new physics through tt
 decays to invisible particles to see
 if this is actually possible at the LHC

Method

- Use the existing search for SUSY particles and adapt it to look for t $\overline{t} Z(\rightarrow v \overline{v})$ decays
- Can reduce the associated uncertainties by taking the ratio of $\frac{\sigma(t\bar{t}Z(\rightarrow v\bar{v}))}{\sigma(t\bar{t}Z(\rightarrow l\bar{l}))}$ because the uncertainties are correlated, so t $\bar{t} Z(\rightarrow l \bar{l})$ was also investigated
- This can also be compared to branching ratios to indicate whether the Standard Model is incomplete...

Theory

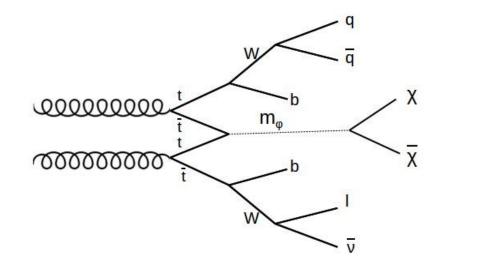

•

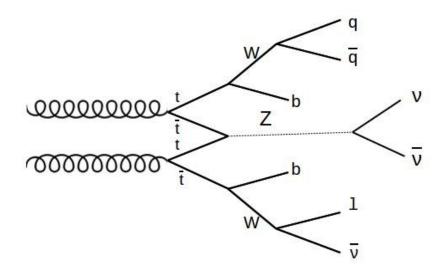

A hint at new physics

- If the Standard Model holds, then $\frac{\sigma(t\bar{t}Z(\rightarrow v\bar{v}))}{\sigma(t\bar{t}Z(\rightarrow l\bar{l}))} = \frac{BR(t\bar{t}Z(\rightarrow v\bar{v}))}{BR(t\bar{t}Z(\rightarrow l\bar{l}))} \approx 6$
- If invisible particles are produced (e.g. dark matter via $\mathbf{t} \ \bar{\mathbf{t}} \ \mathbf{m}_{\phi}(\rightarrow \mathbf{X} \ \overline{\mathbf{X}})$), then $\frac{\sigma(t\bar{t}Z(\rightarrow v\bar{v}))}{\sigma(t\bar{t}Z(\rightarrow l\bar{l}))} = \frac{BR(t\bar{t}Z(\rightarrow v\bar{v})) + BR(t\bar{t}m_{\phi}(\rightarrow \chi\bar{\chi}))}{BR(t\bar{t}Z(\rightarrow l\bar{l}))} \neq 6$
- Inspired by a similar study in which $\frac{\sigma(jet + Z(\to v\bar{v}))}{\sigma(jet + Z(\to l\bar{l}))}$ was measured and compared to the branching ratio
- Want to test the feasibility of using $\frac{\sigma(t\bar{t}Z(\to v\bar{v}))}{\sigma(t\bar{t}Z(\to l\bar{l}))}$ to find new physics

So $t\bar{t}Z(\rightarrow l\bar{l})$ was also studied (where l = electron or muon)

- Background interactions include single top, $t\bar{t}$, diboson, Z + jets and $t\bar{t}Z$
- Similar signature (jets and missing transverse energy)

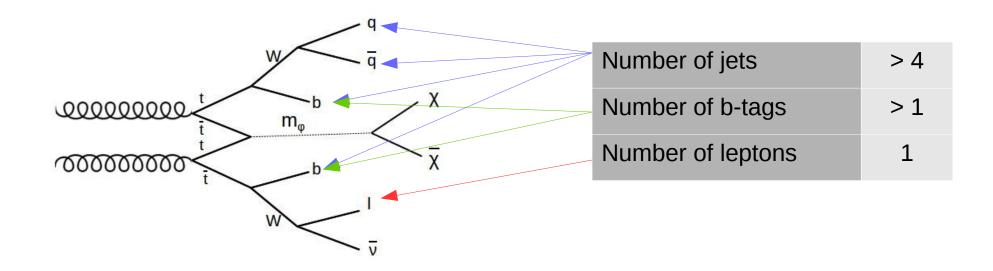

Channels of interest


Production of dark matter

- Mediated by a spin 0 or spin 1 boson (m_{ϕ})
- $X\overline{X}$ are a pair of dark matter fermions

tītZ(→v v)

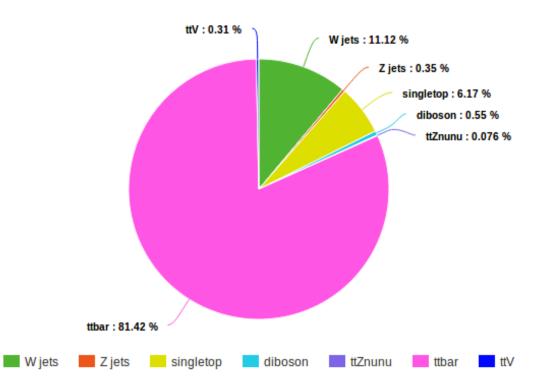
- Background interaction
- Used to look for the decay
- Similar signature (jets and missing transverse energy)

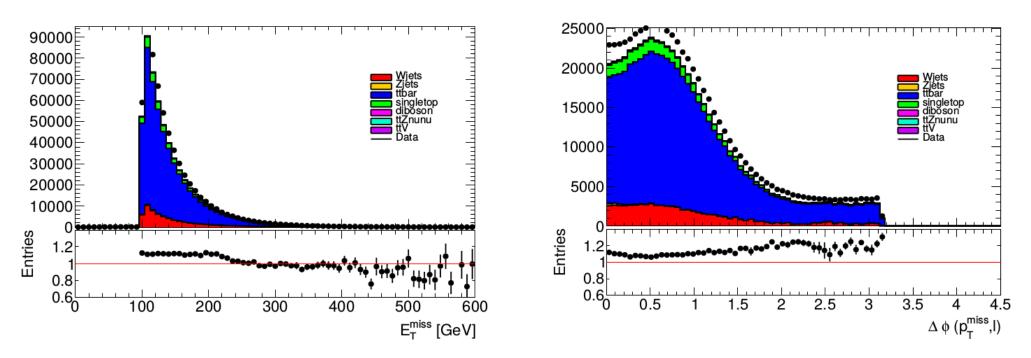


Other background decays

• Decays to a single top, $t\bar{t}$, diboson, W + jets, Z + jets and $t\bar{t}V$ (where V is a W or Z boson)

Analysis Preselection level


• These are the first selections applied and they are applied to all signal regions.


• This selection ensures one W boson decays leptonically and one to a quark/antiquark pair to make signal clearer.

Analysis Preselection level

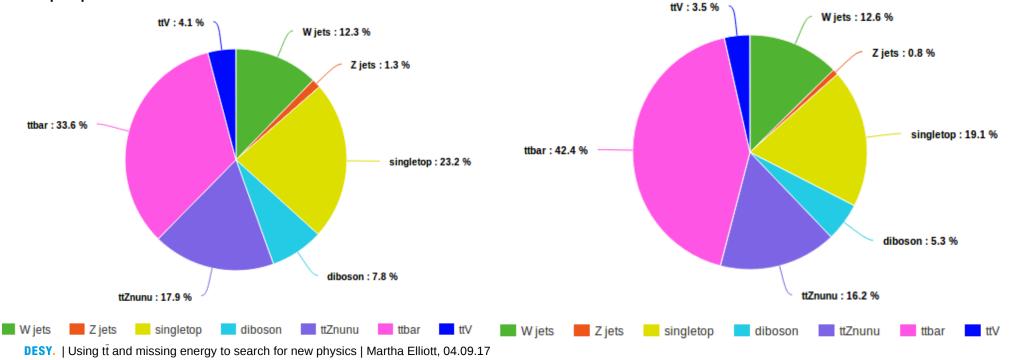
- A total of ~560,000 events were expected using Monte Carlo with the below proportions
- The dominant background decay is to $t\bar{t}$

Analysis Preselection level

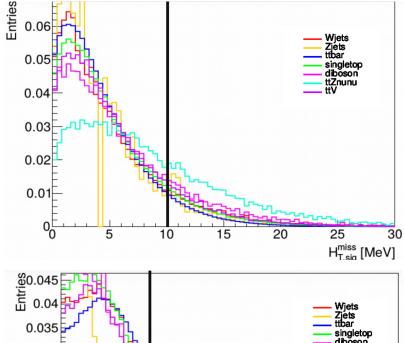
- These plots show that tt is the most dominant background process
- The data line shows that the Monte Carlo simulation of the shape is good
- There is an offset between the data and the Monte Carlo by ~10%, this is the same as ATLAS-CONF-2017-037 before background fits (likely due to an inaccurate scaling of background)
- Validates later simulation usage

Decay analysis

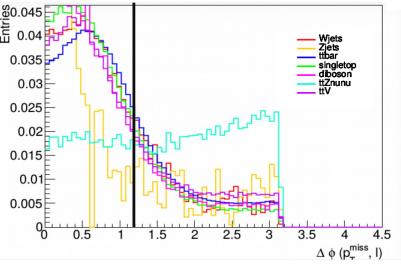
- The DM high and DM low signal regions from the SUSY search were also investigated
- tt less dominant than with just the preselection

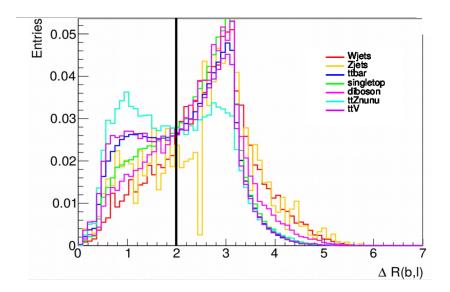

DM high

 37 events in total with the below proportions


DM low

• 67 events in total with the below proportions


Variable	DM low	DM high
Jet p _T [GeV]	> (120, 85, 65, 25)	> (125, 75, 65, 25)
b jet p _T [GeV]	> 60	> 25
E _T ^{miss} [GeV]	> 300	> 380
m _T [GeV]	> 170	> 225
am _{T2} [GeV]	> 160	> 190
$H_{T,sig}^{miss}$	> 14	-
$\Delta \Phi(p_T^{miss}, I)$	> 1.2	> 1.2
$\Delta \Phi(p_T^{miss}, jet_{1,2})$	> 1.0	> 1.0



Analysis Signal region for $t \bar{t} Z(\rightarrow v \bar{v})$ optimisation

- Signal regions that maximised the number of ttZnunu events and the purity of ttZnunu events were defined
- This was done by analysing the overlaid plots from the preselection
- Three examples of this are shown for $H_{_{T,sig}}{}^{_{miss}}$, $\Delta R(b\text{-jet, I})$ and $\Delta \Phi(p_{_T}{}^{_{miss}}, I)$
- Cuts were also made to m_T , am_{T2} , $\Delta \Phi(p_T^{miss}, jet_{1,2})$ and E_t^{miss}

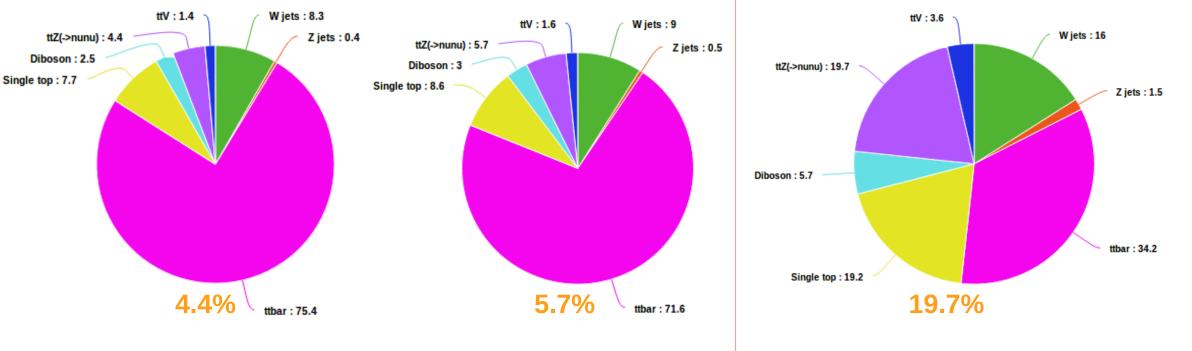
Analysis

Three possible signal regions were considered and the one with the smallest uncertainty chosen

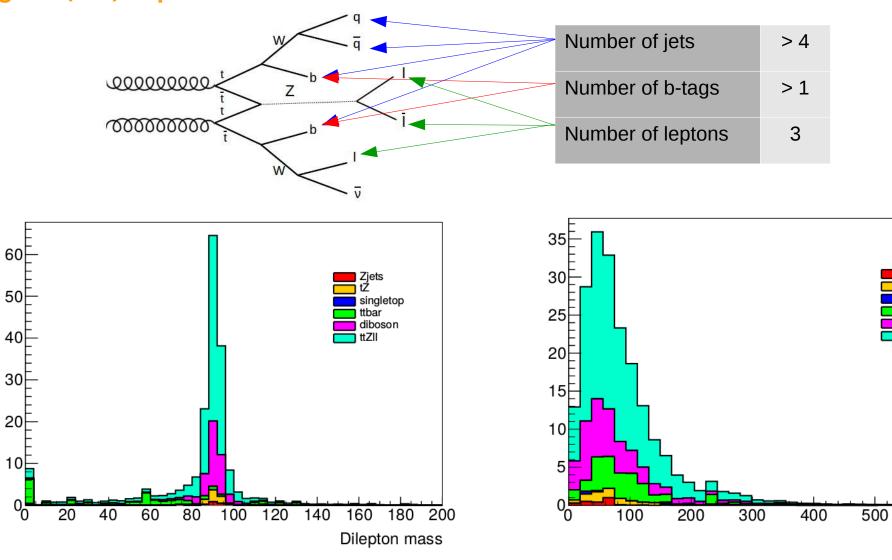
SRA

61 out of 1398 events

SRB


43 out of 1557 events •

SRC


ttZ(->nunu)

ttV

- To reduce the uncertainty, a compromise between number of events and purity has to be made •
- SRC had the lowest percentage uncertainty •

Analysis Studying $t\bar{t}z(\rightarrow l\bar{l})$ at preselection level

Zjets tZ

ttbar

ttZII

diboson

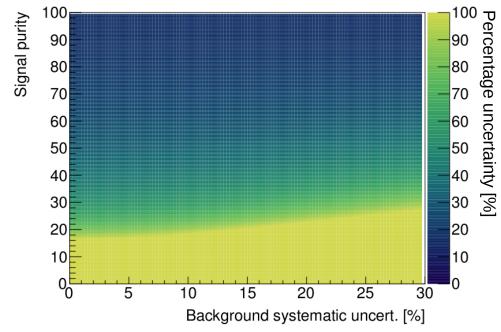
600

 E_T^{miss} [GeV]

singletop

The future

Investigating $t \bar{t} z (\rightarrow l \bar{l})$ and $t \bar{t} z (\rightarrow v \bar{v})$ in SRC


- The current luminosity of the LHC is 36.5fb^{-1} (2015 + 2016)
- By the end of Run 2 in 2018, this will have increased to ~100fb⁻¹
- The high luminosity LHC will begin running in 2025 and will have a luminosity of \sim 3000fb⁻¹

$t\bar{t}Z(\rightarrow v v)$:

Luminosity (fb^{-1})	Total expected	Number of	Number of	Percentage
	number of events	signals	background events	uncertainty
36.5	37.3	7.4	29.9	92%
100	102.2	20.3	81.9	64%
3000	3065.8	608.2	2457	41%

tītZ(→ l Ī):

Luminosity (fb^{-1})	Total expected	Number of	Number of	Percentage
	number of events	signals	background events	uncertainty
36.5	1.65	0.70	0.95	184%
100	4.52	1.9	2.6	113%
3000	136	58	78	24%

- Using a systematic uncertainty of 10%, the percentage uncertainty on $t\bar{t}Z(\rightarrow v \bar{v})$ and $t\bar{t}Z(\rightarrow l \bar{l})$ was determined for SRC
- The uncertainty is shown to decrease with the increased luminosity
- Demonstrates that due to the difficulty separating $t\bar{t}Z(\rightarrow v \bar{v})$ from the background that a ratio to $t\bar{t}Z(\rightarrow l \bar{l})$ is not yet useful

Conclusion

- $t \bar{t} Z(\rightarrow v \bar{v})$ and $t \bar{t} Z(\rightarrow l \bar{l})$ were isolated and studied to look for new physics in the form of invisible decays
- A new signal region was defined with the optimal cuts for achieving maximum purity and most events of t $\overline{t} Z(\rightarrow v \overline{v})$
- Despite this, the background signals were still dominant causing large percentage uncertainties
- This particular ratio could be useful only with a significantly increased luminosity and a significantly decreased systematic uncertainty
- The same method could however be applied to other decays with better purity
- Hopefully this could lead the way to the discovery of new physics

References

Internal note (more details): https://cds.cern.ch/record/2231917/files/ATL-COM-PHYS-2016-1623.pdf

Latest conference note: https://cds.cern.ch/record/2266170/files/ATLAS-CONF-2017-037.pdf

Rmiss graph: https://arxiv.org/pdf/1707.03263v1.pdf

Notes (ttZnunu files)

Background	Number of events
W jets	62,698
Z jets	1,954
Single top	459,178
Diboson	34,783
ttbar	3,082
ttV	429
ttZnunu	1,771

SRA	
Background	Number of events
W jets	116
Z jets	6
Single top	107
Diboson	35
ttbar	1054
ttV	19
tī́Z(→ v v)	61

SRC		SRB	
Background	Number of events	Background	Number of events
W jets	6.0	W jets	868
Z jets	0.6	Z jets	4
Single top	12.7	Single top	65
Diboson	7.2	Diboson	23
ttbar	2.1	ttbar	542
tt∨	3.6	tt∨	12
tīz(→v v)	7.4	tītZ(→v v)	43

DM high

Background	Number of events
W jets	4.5
Z jets	0.5
Single top	12.4
Diboson	8.6
ttbar	2.9
ttV	6.6
ttZnunu	1.5

DM low

Background	Number of events
W jets	8.4
Z jets	0.5
Single top	28.2
Diboson	12.7
ttbar	3.5
ttV	10.8
ttZnunu	2.3

ttZnunu1.5ttZnunu2.3 $\Delta \Phi(p_T)$ Latest conference note: https://cds.cern.ch/record/2266170//iles/ATLAS-CONF-2017-037.pdf $\Delta \Phi(p_T)$ Internal note (more details): https://cds.cern.ch/record/22319//files/ATL-COM-PHYS-2016-1623.pdf $\Delta R(b)$ Rmiss graph: https://arxiv.org/pdf/1707.03263v1.pdf $\Delta R(b)$

Variable	SRB	SRA	SRC
E ^{miss} [GeV]	> 280	> 250	> 380
m _τ [GeV]	> 125	> 100	> 225
am _{T2} [GeV]	-	-	> 190
$H_{T,sig}^{miss}$	> 10	> 10	> 10
$\Delta \Phi(p_T^{miss}, I)$	> 1.0	> 0.9	> 1.2
$\Delta \Phi(p_T^{miss}, jet_{1,2})$	> 0.7	> 0.6	> 1.0
ΔR(b jet, l)	-	-	< 2.0

DESY.