X-ray cross-correlation analysis of mesocrystals

Lapkin Dmitry Summer Student

Supervised by Nastasia Mukharamova, Ivan Vartaniants

COINS: Coupled organic-inorganic nanostructures

Coupled organic-inorganic nanostructures (COIN) provide a new approach to applications of semiconductor nanocrystals (NC) for power conversion. A typical COIN consists of periodically alternating NCs and organic semiconductor molecules, promoting carrier transport across the lattice.

Experiment (P10 beamline, PETRA III)

$>$ Substrate: $\mathrm{Si}_{3} \mathrm{~N}_{4}$-membrane, $0.5 \times 0.5 \mathrm{~mm}^{2}, 50 \mathrm{~nm}$ thick
> X-ray beam:
$\mathrm{E}=13.8 \mathrm{keV}$
Size $=400 \times 400 \mathrm{~nm}^{2}$
Flux $=10^{10-10^{11}} \mathrm{ph} / \mathrm{sec}$
> Spatial scanning: 31×31 points with $1 \mu \mathrm{~m}$ resolution.

Superlattice structure

$q_{\text {exp }}, \AA^{-1}$	h	k	l	$q_{\text {predict }}, \AA^{-1}$	$h+k+l$
0,081	1	1	0	0,081	2
0,118	2	0	0	0,114	2
0,143	1	0	3	0,145	4
0,163	2	2	0	0,162	4
0,185	1	2	3	0,184	6

$h+k+1$ are even -> body-centered

Radial average (log scale)

bct lattice with

$$
a=110 \AA
$$

$$
C=142 \AA
$$

$$
\mathrm{c} / \mathrm{a}=129 \%
$$

NC size ~ $70 \AA$

Sample-containing regions

Spatial resolved maps

Cross-Correlation Analysis

> CCF calculation

$$
\begin{gathered}
C\left(q_{1}, q_{2}, \Delta\right)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} I\left(q_{1}, \varphi\right) I\left(q_{2}, \varphi+\Delta\right) d \varphi \\
=\frac{\int_{-\pi}^{\pi} I\left(q_{1}, \varphi\right) W\left(q_{1}, \varphi\right) I\left(q_{2}, \varphi+\Delta\right) W\left(q_{2}, \varphi+\Delta\right) d \varphi}{\int_{-\pi}^{\pi} W\left(q_{1}, \varphi\right) W\left(q_{2}, \varphi+\Delta\right) d \varphi} .
\end{gathered}
$$

> Mask
$W(q, \varphi)=\left\{\begin{array}{lr}0, & \text { gaps, beamstop, detector edges } \\ 1, & \text { otherwise }\end{array}\right.$
$>$ Averaging

$$
\left\langle C\left(q_{1}, q_{2}, \Delta\right)\right\rangle_{M}=\frac{1}{M} \sum_{i=1}^{M} C^{i}\left(q_{1}, q_{2}, \Delta\right)
$$

Cross-Correlation Analysis

Region 2

Region 1

Superlattice structure

SAXS:
bct lattice with

$$
\begin{gathered}
a=110 \AA \\
c=142 \AA \\
\frac{c}{a}=129 \%
\end{gathered}
$$

$$
\frac{a}{c}=3 \sqrt{\frac{1}{\cos ^{2} 2 \beta}-1}
$$

From the XCCA data: $2 \beta=33,4^{\circ}$

$$
\frac{c}{a}=133 \%
$$

CCF simulation

SAXS/WAXS peaks:

Conclusions

$>$ Experimental data on the COIN samples (PbS-OA) was processed.
> Domains with different crystalline structure were defined from the diffraction map and the spatial-resolved peak positions map.
> Each domain was studied by the X-ray Cross-Correlation Analysis
> Unit cell parameters was evaluated from the radial average intensity and from the XCCA analysis.
$>$ Obtained results are in good agreement:

- bct lattice with $a=b=110 \AA, c=142 \AA$ and tetragonal distortion $c / a=1.29$ from RA
- tetragonal lattice with distortion c/a=1.33 from XCCA

Thank you for your attention!

Special thanks to my supervisors and the whole Coherent X-Ray Scattering and Imaging Group

Superlattice structure

Radial average (log scale)

$q_{\text {exp }}, \AA^{-1}$	h	k	l	$q_{\text {predict, }} \AA^{-1}$	$h+k+l$
0,081	1	1	0	0,081	2
0,118	2	0	0	0,114	2
0,143	1	0	3	0,145	4
0,163	2	2	0	0,162	4
0,185	1	2	3	0,184	6

$\mathrm{h}+\mathrm{k}+\mathrm{l}$ are even -> body-centered

$$
\begin{gathered}
\text { bct lattice with } \\
a=b=110 \AA \\
c=142 \AA \\
c / a=129 \% \\
\text { NC size } \sim 70 \AA
\end{gathered}
$$

Superlattice structure

SAXS:
bct lattice with

$$
\begin{aligned}
& a=110 \AA \\
& c=142 \AA \\
& \frac{c}{a}=129 \%
\end{aligned}
$$

Gramian matrix for the reciprocal space

$$
G=2 \pi\left(\begin{array}{ccc}
\frac{1}{a^{2}} & 0 & 0 \\
0 & \frac{1}{a^{2}} & 0 \\
0 & 0 & \frac{1}{c^{2}}
\end{array}\right)
$$

For angle 2β between 013 and $\overline{1} 03$ reflections

$$
\cos 2 \beta=\frac{u^{T} G v}{\sqrt{u^{T} G u} \sqrt{v^{T} G v}},
$$

$$
\text { where } u^{T}=\left(\begin{array}{lll}
0 & 1 & 3
\end{array}\right) \text { and } v^{T}=\left(\begin{array}{ll}
-1 & 0
\end{array}\right.
$$

$$
\text { Thus, } \frac{c}{a}=3 \sqrt{\frac{1}{\cos ^{2} 2 \beta}-1}
$$

From the XCCA data: $2 \beta=33,4^{\circ}$

$$
\text { and } \frac{c}{a}=133 \%
$$

Cross-Correlation Analysis

Domain 3

CCF simulation

SAXS/WAXS peaks:

$A_{S A X S}=50$	$A_{W A X S}=20$
$\sigma_{S A X S}=0.03\left(1.72^{\circ}\right)$	$\sigma_{W A X S}=0.1\left(5.72^{\circ}\right)$
$\varphi_{S A X S}^{i}:$	$\varphi_{W A X S}^{i}:$
$\pm \operatorname{atan}(0.3)$,	$\pm \frac{\pi}{4}$,
$\pi \pm \operatorname{atan}(0.3)$	$\pi \pm \frac{\pi}{4}$

$$
\operatorname{tg}\left(\beta=16.7^{\circ}\right)=0.3
$$

