X-ray cross-correlation analysis of mesocrystals

Lapkin DmitrySummer Student

Supervised by Nastasia Mukharamova, Ivan Vartaniants

Sample "Flower"

COINS: Coupled organic-inorganic nanostructures

Coupled organic-inorganic nanostructures (COIN) provide a new approach to applications of semiconductor nanocrystals (NC) for power conversion. A typical COIN consists of periodically alternating NCs and organic semiconductor molecules, promoting carrier transport across the lattice.

Experiment (P10 beamline, PETRA III)

- Substrate: Si₃N₄-membrane, 0.5x0.5 mm², 50 nm thick
- > X-ray beam:

E = 13.8 keV

Size = $400x400 \text{ nm}^2$

Flux = 10^{10} - 10^{11} ph/sec

> **Spatial scanning:** 31x31 points with 1 µm resolution.

q _{exp} , Å-1	h	k	I	q _{predict} , Å-1	h+k+l
0,081	1	1	0	0,081	2
0,118	2	0	0	0,114	2
0,143	1	0	3	0,145	4
0,163	2	2	0	0,162	4
0,185	1	2	3	0,184	6

h+k+l are even -> body-centered

Radial average (log scale)

bct lattice with

a = 110 Å

c = 142 Å

c/a= 129 %

NC size ~ 70 Å

Sample-containing regions

Integrate intensity in WAXS region $(|q| = 1.8 - 2.3 \text{ Å}^{-1})$

Spatial resolved maps

Cross-Correlation Analysis

CCF calculation

$$C(q_1, q_2, \Delta) = \frac{1}{2\pi} \int_{-\pi}^{\pi} I(q_1, \varphi) I(q_2, \varphi + \Delta) d\varphi$$
$$= \frac{\int_{-\pi}^{\pi} I(q_1, \varphi) W(q_1, \varphi) I(q_2, \varphi + \Delta) W(q_2, \varphi + \Delta) d\varphi}{\int_{-\pi}^{\pi} W(q_1, \varphi) W(q_2, \varphi + \Delta) d\varphi}.$$

> Mask

$$W(q, \varphi) = \begin{cases} 0, & \text{gaps, beamstop, detector edges} \\ 1, & \text{otherwise} \end{cases}$$

> Averaging

$$\langle C(q_1, q_2, \Delta) \rangle_M = \frac{1}{M} \sum_{i=1}^M C^i(q_1, q_2, \Delta)$$

Cross-Correlation Analysis

-50

 $\Delta(^{\circ})$

50

100

150

 $\sqrt{\cos^2 2\beta}$

SAXS:

bct lattice with

$$a = 110 \,\text{Å}$$

$$c = 142 \,\text{Å}$$

$$\frac{c}{a} = 129\%$$

From the XCCA data: $2\beta = 33.4^{\circ}$

$$\frac{c}{a} = 133\%$$

CCF simulation

200 020 $tg(\beta = 16.7^{\circ}) = 0.3$

Distortion value $\frac{c}{a} = 133\%$ obtained by XCCA was approved

SAXS/WAXS peaks:

$$I_{\frac{SAXS}{WAXS}}(\varphi) = A_{\frac{SAXS}{WAXS}} \cdot \exp\left(-\frac{\left(\varphi - \varphi_{\frac{SAXS}{WAXS}}^{i}\right)^{2}}{2\sigma_{\frac{SAXS}{WAXS}}^{2}}\right)$$

$$CCF_{sim}(\Delta) = \int_{-\pi}^{\pi} I_{SAXS}(\varphi) I_{WAXS}(\varphi + \Delta) W(\varphi + \Delta) d\varphi$$

Conclusions

- Experimental data on the COIN samples (PbS-OA) was processed.
- Domains with different crystalline structure were defined from the diffraction map and the spatial-resolved peak positions map.
- Each domain was studied by the X-ray Cross-Correlation Analysis
- Unit cell parameters was evaluated from the radial average intensity and from the XCCA analysis.
- Obtained results are in good agreement:
 - bct lattice with a=b=110 Å, c = 142 Å and tetragonal distortion c/a=1.29 from RA
 - tetragonal lattice with distortion c/a=1.33 from XCCA

Thank you for your attention!

Special thanks to my supervisors and the whole Coherent X-Ray Scattering and Imaging Group

Radial average

Radial average (log scale)

q _{exp} , Å-1	h	k	1	q _{predict} , Å-1	h+k+l
0,081	1	1	0	0,081	2
0,118	2	0	0	0,114	2
0,143	1	0	3	0,145	4
0,163	2	2	0	0,162	4
0,185	1	2	3	0,184	6

h+k+l are even -> body-centered

bct lattice with a = b = 110 Å

c = 142 Å

c/a= 129 %

NC size ~ 70 Å

Gramian matrix for the reciprocal space

$$G = 2\pi \begin{pmatrix} \frac{1}{a^2} & 0 & 0\\ 0 & \frac{1}{a^2} & 0\\ 0 & 0 & \frac{1}{c^2} \end{pmatrix}$$

For angle 2β between 013 and $\overline{1}03$ reflections

$$\cos 2\beta = \frac{u^T G v}{\sqrt{u^T G u} \sqrt{v^T G v}},$$

where
$$u^T = (0 \quad 1)$$

where
$$u^T = (0 \ 1 \ 3)$$
 and $v^T = (-1 \ 0 \ 3)$.

SAXS: bct lattice with $a = 110 \,\text{Å}$ $c = 142 \,\mathrm{\AA}$ $\frac{c}{\tilde{c}} = 129\%$

Thus,
$$\frac{c}{a} = 3\sqrt{\frac{1}{\cos^2 2\beta} - 1}$$

From the XCCA data: $2\beta = 33.4^{\circ}$

and
$$\frac{c}{a} = 133\%$$

Cross-Correlation Analysis

CCF simulation

SAXS/WAXS peaks:

$$I_{\frac{SAXS}{WAXS}}(\varphi) = A_{\frac{SAXS}{WAXS}} \cdot \exp\left(-\frac{\left(\varphi - \varphi_{\frac{SAXS}{WAXS}}^{i}\right)^{2}}{2\sigma_{\frac{SAXS}{WAXS}}^{2}}\right)$$

$A_{SAXS} = 50$	$A_{WAXS} = 20$
$\sigma_{SAXS} = 0.03 (1.72^{\circ})$	$\sigma_{WAXS} = 0.1 (5.72^{\circ})$
$arphi_{SAXS}^i$:	φ_{WAXS}^{i} : $+\frac{\pi}{-}$
\pm atan(0.3), $\pi \pm$ atan(0.3)	$\frac{\pm}{4}$, $\pi \pm \frac{\pi}{4}$

$$tg(\beta = 16.7^{\circ}) = 0.3$$

Mask:
$$W(\varphi) = \begin{cases} 1, \frac{\pi}{12} < \varphi < \frac{2\pi}{3} \\ 0, otherwise \end{cases}$$

$$CCF_{sim}(\Delta) = \int_{-\pi}^{\pi} I_{SAXS}(\varphi) I_{WAXS}(\varphi + \Delta) W(\varphi + \Delta) d\varphi$$

