Automated Assembly of CMS Phase 2 Stacked Tracker Modules

Meadhbh Murphy

Supervisor James Keaveney

The CMS Detector

Weight ≈ 14000 tonnes
Diameter $\approx 15 \mathrm{~m}$
Length $\approx 21.5 \mathrm{~m}$
Magnetic Field ≈ 4 T -

High Luminosity LHC

- The LHC will be ungraded to the High Luminosity LHC over the coming years
- Instantaneous luminosity is expected to reach $5 \times 10^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$ in the 2020s
- Higher luminosity leads to an increase in number of interactions per bunch crossings (pile up)

Simulation of high pile up event

- Huge increase in data volumes
- Many interactions are lower energy collisions which will not be relevant in the search for new physics

Stacked Sensor Module for HL LHC

- Rejection of low p_{T} particles based on the curvature of their trajectories in a magnetic field reduces data volumes
- Module consists of two closely spaced silicon sensors
- Relative alignment of sensors is crucial to p_{T} discrimination
- Relative rotational alignment < $0.8 \mathrm{mrad} \approx 0.04^{\circ}$

Outline of Proposed Assembly Process

Platform rotates

Defining Orientation of the Sensor

(x, y) coordinates of opposite corners are used to define the orientation of the sensor

Slope of the line joining these points defines angular orientation

Midpoint ($\mathrm{x}_{c^{\prime}} \mathrm{y}_{\mathrm{c}}$) of this line defines the position of the sensor

Locating Corner Markers

- Camera is manually brought to the sensors corner
- An image is taken and passed to pattern recognition software
- A template matching algorithm identifies the position and angular orientation of the

Finding the Opposite Corner

The length, width and angular orientation of detected marker are used calculate the position of the oppositely diagonal marker using trigonometry

Aligning the Sensor

The target slope is defined by the orientation of the top sensor

Angular correction $\Delta \theta$ needed is easily calculated

Rotating the Sensor

Axis of rotation stage is in the centre of the sensor

Rotating the sensor moves the corners in both x and y

Camera has a small frame of view (only a few mm^{2})

If the marker moves out of the camera's frame of view it can no longer be detected by pattern recognition

Making a Module: Silicon Pieces on Glass

Pieces of silicon with corner markers were mounted on glass dummies

Automated Construction

Checking Alignment

- Accuracy of orientation detection is limited by xy resolution of motion stage and size of the sensor to $\pm 0.027^{\circ}$
- This would be significantly reduced with a larger sensor

- 30 measurements of the angular misalignment suggest the two sensors are misaligned by 0.05°
- This is approaching the precision required

Conclusion

- An automated procedure has been put in place to locate the corner markers of a silicon sensor and to extract its orientation
- An iterative process has been developed to bring a sensor to a predefined angular orientation
- A dummy module has been built with a relative alignment approaching the precision required
- Next steps for automated assembly:
- Automation of xy alignment
- Full sized dummy sensors
- Investigation of systematic errors
Thank you for listening!

