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Abstract. We investigate the prospects of measuring 
anomalous couplings between gauge bosons at elec- 
tron-positron-colliders with optimal observables. Such 
observables are shown to contain all information on the 
coupling parameters that can be extracted in a given 
reaction. Their sensitivity to the form factors in the gen- 
eral expressions of the triple gauge vertices WW Z and 
WW~, including CP violating terms and absorptive parts, 
is calculated in view of LEP2 and the NLC. 

1 Introduction 

The standard model of electroweak interactions has been 
extensively tested to a high precision in the last years, and 
has been found in good agreement with the experimental 
data. One of its features that has not yet been checked by 
direct measurements is the self-coupling of the weak gauge 
bosons, whose form in the standard model is completely 
determined by the local SU(2) x U(1)y symmetry and its 
breaking in the Higgs sector. With the production of 
W § W -  pairs at high energy coltiders it will be possible to 
study the triple gauge vertex between two charged and 
a neutral vector boson at tree level. At present, the para- 
meters of this coupling are not very much restricted, neither 
by unitarity [1], nor by indirect bounds from processes 
where a three boson vertex appears in radiative corrections 
[2, 3], nor by direct bounds obtained in p/5 collisions [4]. 
Only for the CP violating part of the coupling some stricter 
limits have been calculated from their contribution to the 
electric dipole moments of fermions [3]. 

A possible way to determine or to restrict coupling 
parameters is to measure the mean values of observables 
depending on the momenta of the detected particles. This 
method has for example been proposed to search for CP 
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violation in Z decays [5, 6] and was shown to be feasible 
in experimental analyses [7]. An important aspect of 
integrated observables is that they allow to separate easily 
couplings with different properties under discrete sym- 
metry transformations, e.g. they can give a clear signal of 
CP violation under the condition that the experimental 
setup respects this symmetry. 

As was shown in [8], for any coupling or other phys- 
ical parameter there is an observable which minimises the 
statistical error in its measurement. This kind of observ- 
able has been used for the measurement of the z polarisa- 
tion in Z decays [9, 10], where a fit of its distribution was 
performed. We shall study optimal integrated observables 
for the detection of anomalous couplings between a neu- 
tral and two charged gauge bosons in the reaction 
e + e- ~ W § W- .  This will be an issue of interest at LEP2 
and a next linear collider NLC, which is under discussion 
[11]. 

Our paper is organised as follows. In Sect. 2 we recall 
some facts about the reaction and the vertex under study, 
and give the framework of our calculations. We then turn 
to integrated observables in Sect. 3, discuss relevant sym- 
metry properties, and give some examples for simple ob- 
servables one can construct. Section 4 deals with general 
properties of optimal observables as introduced in [8]. 
Some details about the optimal observables for the pro- 
cess we are investigating are given in Sect. 5. Finally, we 
present our numerical results and draw conclusions. 
A proof of the main theorem used in Sect. 4 can be found 
in the appendix. 

2 The reaction e+e  - ~ W § W -  and the three gauge boson 
vertices 

A reaction suitable for studying the triple gauge vertices 
WWZ and WW7 is W pair production at e +e--colliders. 
At tree level it takes place by annihilation of e+e- into 
a virtual Z or 7 which subsequently decays into W + W- ,  
or via t-channel exchange of a neutrino (cf. Fig. 1). Experi- 
mentally, only hadronic jets or charged leptons from the 
decay of the Ws can be detected. The mean decay length of 
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Fig. 1. Tree level Feynman diagrams for e+e-~ W + W- 
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leptons being small (not more than 4 mm at LEP2 
energies and smaller than 12.5 mm at w/s=500 GeV), 
they cannot be treated on the same footing as the light 
leptons a s  far as detection and reconstruction are con- 
cerned. Furthermore, events with both W bosons 
decaying into electrons or muons are disfavoured by their 
small branching ratio. We shall concentrate on 'semilep- 
tonic' events with one W decaying into e or kt and the 
other into the dijet. 

With unpolarised beams and an integrated luminosity 
of 500 pb-  1 at LEP2, a run at x/~ = 190 GeV, where the 
total cross section assumes its maximum of about 20 pb, 
will yield 10 000 Wpairs, i.e. 3000 semileptonic events. We 
also performed calculations at other energies, namely 
175 GeV, 180 GeV, and 210 GeV, where the cross section 
is still above 18 pb. A 500 GeV linear collider NLC with 
unpolarised beams and 10fb -1 [11] would produce 
about 75 000 W pairs, the gain in luminosity being much 
larger than the drop of the cross section to 7.5 pb. 

Effects from higher orders in the standard model and 
from possible new interactions beyond it will modify the 
production rates, angular distributions, and polarisations 
of the W pairs as compared to the tree level predictions 
obtained from the diagrams of Fig. 1. We will study such 
modifications that are due to a general ansatz for the 
WWZ and WW? vertex functions. We use the paramet- 
risations of [12], i.e. 

r P (q, 4, P)= 
p V  

fV  (q_4)U g~p _ _ ~  (q _~l)u W p~ + f f  ( p~ gup _p~ g~,,) 

+ i f  v(P~g"~ +P~g~)+ifve"~P(q-Ct)p 

-- fVeu~aP PP --~-~w (q - Cl)"e~PP'PP(q--gl)'~' (1) 

where V denotes a Z or ?. F~ au, as well as momenta and 
Lorentz indices are defined in Fig. 2. The global constants 
are chosen as 

gww~ = - e, gwwz = - e cot 3w (2) 

with the positron charge e, and e is the totally antisymmet- 
ric tensor with ~ot23=1. The set of f v describes any 
coupling between on-sheU Ws and a Z or 7 whose scalar 
component can be neglected (which is the case for our 
reaction because, up to terms suppressed by the electron 
mass, the initial e +e--current is conserved). Their relation 
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Fig. 2. The triple gauge vertex WWV 

with the parameters ~c, 2, ~, 2 etc. in the effective Lagran- 
gian of the coupling, which are often employed in the 
literature, can be found in [12]. The couplings with the 
form factors f v ,  f f ,  f v  and f v  are CP conserving, those 
withfV,f6 v a n d f  v CP violating. In our analysis, we shall 
assume theft v to be complex, their imaginary parts being 
connected with the absorptive part of the vertex. 

At tree level, the standard model predicts f z  = f ]  = 1, 
f3z=fs~=2 and zero for all other form factors. Since (1) 
gives the full vertex function, the j~v obtain contributions 
from radiative corrections already within the standard 
model. For simplicity, we call "anomalous" any deviation 
from the tree level values. In this sense anomalous coup- 
lings are not necessarily a sign of new physics. At least for 
the couplings which are odd under a CP transformation, 
one can expect a very small contribution from the stan- 
dard model, where in the present reaction CP violation 
enters only at two loop level. 

For our calculations, we used the coordinate system 
introduced in [12], p. 270, where the kinematics is de- 
scribed in terms of the angle between the e- and the W -  
in the centre of mass of the e +e- annihilation and polar 
coordinates for the decay products of the Ws in the re- 
spective W rest frames. In total there are five angles to 
consider, not counting the azimuthal angle of the W- ,  
which enters if detection or experimental cuts violate the 
rotation symmetry with respect to the beam axis. 

We calculated the Born level amplitudes for W pro- 
duction and decay in the helicity basis, with (1) for the 
three boson couplings and the standard model expres- 
sions for all other vertices. One can of course not rule out 
nonstandard effects which do not originate in the three 
gauge boson vertices. For a systematic study of all pos- 
sible anomalous couplings in e+e ----, W + W -  we refer to 
[13]. For the W propagators, the narrow width approx- 
imation was used, and the finite Z width, as well as 
fermion masses, were neglected. Our phase conventions 
for spinors are those of [12], and our results for the 
amplitudes agree with theirs. 

The particular choice of phase space coordinates leads 
to relatively simple expressions for the amplitudes, espe- 
cially for the terms multiplied by the anomalous parts of 
the form factors. Namely, the full amplitude is a trigono- 
metric polynomial of first degree in the five angles men- 
tioned above, except for the standard model part, where 
due to the t-channel neutrino exchange the dependence on 
the angle 0 between e- and W-  is through a rational 
function of sin 0 and cos 0. 

In our numerical calculations, we used the values 
Mw= 80.22 GeV and Mz=91.17 GeV [4] and the defini- 
tion sin20w = 1 - ( M w / M z )  2 for the weak mixing angle. 



For the calculation of the number of events we further- 
more took the effective electromagnetic coupling to be 

= 1/128. 
In the reaction we are investigating, both the couplings 

of the Z and ? are present, and one expects their separ- 
ation to be difficult. Alternatively, one may work with the 
linear combinationsf~ L andfi R which appear in the ampli- 
tudes for left or right handed electrons in the initial state. 
We define 

fi/" = 4 sin 20wfi ~ + ( 2 -  4 sin 20w) ~ f z  

fi R = 4 sin 20wfJ  -- 4 sin 2 0 w ~fi z, (3) 

where 

S 

= s -  M} (4) 

is the ratio of the Z and the 7 propagators. We shall see 
that at least for LEP2 energies, the contribution of the 
f i r  to the optimal observables can be neglected, which 
greatly reduces the number of unknown parameters in the 
analysis. 

3 Integrated observables for the detection of anomalous 
gauge boson couplings 

Let us consider the reaction 

e+ e - --+ W + W -  -+l +vlqd:l,, (5) 

where I stands for e or #, qa for a d, s or b quark and q, for 
a u or c quark, and write its differential cross section in the 
form 

~ = S o + ~  S 1 , i g i + ~  (6) S2,ijglgj. 
i , j  

Here g~ denotes the real and imaginary parts of the form 
factors f r ,  z minus their standard model values at Born 
level, and 4> the set of measured phase space variables. The 
general idea of integrated observables is to choose a func- 
tion 0(4>) and to measure its mean value ((9). Expressed 
in a different way, the full distribution of 4> is weighted 
with (9(4>), or it is projected on the distribution of this 
quantity, and the information about the unknown coup- 
ling parameters is then extracted from the mean of this 
distribution. Neglecting terms of higher order in the pre- 
sumably small quantities g~ we have 

<(9> = <(9>o + ~ cigi, (7) 
i 

where <(9>0 is the mean value predicted by the standard 
model. To assess the sensitivity of the observable to anom- 
alous couplings, one further needs the error in the 
measurement of ((9). Its purely statistical part is given by 
the standard deviation A(9 of the distribution of (9(4>) and 
the number n of events as A(9/xfn.  The quantity 

1 A(9 
6gl = icil ~ (8) 
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is then the absolute value gi must have so that the mean 
value <(9> differs from the standard model prediction by 
one standard deviation, assuming the other anomalous 
couplings to be zero.* 

3.1 Discrete symmetries 

Let us consider together with (5) the charge conjugated 
decays of the Ws: 

e+ e - --~ W + W -  ~gldq, l - v~. (9) 

It is advantageous to define observables (9 § and (9 - of the 
same dimension for (5) and (9), respectively, and to evalu- 
ate the common mean value 

de + (9 + +~ d e -  (9 - (i0) 
((9) = I de + +~ de - ' 

where de + and d e -  denote the differential cross sections 
for the respective channels. This not only increases statis- 
tics, but, with a judicious choice of (9-+, also allows to 
separate different form factors thanks to discrete symmet- 
ries, as we shall now see. 

We will call an observable CP even if under a CP 
transformation 

CP:(9++-->(9 -,  (11) 

and CP odd if 

CP: (9 + w-~-(9 -. (12) 

We require detector and experimental cuts to be C and 
P blind, so that the integration domain remains invariant 
under substitution of the phase space variables with their 
C and P conjugated ones. Furthermore, we recall that in 
its centre of mass the initial e+e - state is a CP eigenstate 
for unpolarised beams. Under these circumstances, if an 
observable is CP odd, its mean value (10) receives no 
contribution from the CP even terms of the differential 
cross section. The measurement of a nonzero mean value 
for a CP odd observable is therefore a clear signal of CP 
violation in the reaction. Inversely, CP odd terms of the 
cross section do not contribute to the mean value of a CP 
even observable. 

Our ansatz for de/d4> takes all couplings except the 
one between gauge bosons from the standard model, 
which in our reaction generates CP violation only at two 
loop level, and this effect is negligible for our purposes. We 
do not consider the possibility of anomalous W decays 
here. Then the only CP odd terms in de/d4> come from the 
interference of a CP violating three boson coupling with 
the CP conserving part of the J -ma t r ix ,  and CP even 
(odd) observables project onto CP even (odd) anomalous 
boson couplings. 

Let us consider next the T and C P T  transformation 
properties of observables. For this, it is essential to distin- 
guish between time reversal T and-following the parlance 
of [123-the operation i?, which reverses particle momenta 

* The presence of several parameters will be given a more thorough 
treatment in the next sections 
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and spins but does not interchange initial and final states. 
Let (9 in (10) be a totally symmetric tensor observable of 
rank n, where n = 0 is a scalar, n = 1 a vector etc.* We will 
say that (9 has a definite CPT parity qo = -  1, if under 
a CP T transformation 

CP7":(9 + ~ ~o( -  1)" (9-. (13) 

Furthermore, we will always assume CPT invariance to 
hold. Then an observable of negative t/o, when integrated 
over the whole phase space, can get a nonzero expectation 
value only if absorptive parts are present in the ~--matrix 
[6, 14]. If cuts are made in phase space, one has to be 
careful since the initial e +e- state gets its momenta rever- 
sed by a CPi~transformation. Such a reversal of momenta 
can also be achieved by some rotation R by 180 ~ about an 
axis perpend~ular to the beams. If the cuts are invariant 
under C, P, T, and under a rotation R of the above type, 
and if 

R: (9-+ ~--~ ( -  1)" (9 -+, (14) 

then it is still true that an observable of negative t/o can get 
a nonzero expectation value only from absorptive parts in 
the J--matrix. 

With the above requirements for the experimental 
phase space, a term in da/dO will only contribute to the 
expectation value of an observable (9 if it has the same 
CPT parity r/o. In our approximation the only absorptive 
parts in the Y--matrix come from imaginary parts of the 
form factorsJ~ v. Then the expectation value of a C P T  odd 
observable will vanish to zeroth order and a C P T  even 
(odd) observable can have first order contributions only 
from the real (imaginary) parts of the anomalous form 
factors.** Of course, beyond tree level, the standard 
model generates also absorptive parts which are not due 
to the gauge boson vertex [15]. 

3.2 Some simple observables 

We shall now present some observables constructed with 
momentum vectors of the W decay products in the labor- 
atory frame. An example for a CP odd tensor observable 
is defined by setting for (9 -+ in (10) 

T~ + =(k+ -k~),(k+ • kl)j+(k+ -k2)i(k + x k2)j+ {i+-->j}. 
(15) 

Here k+ and k_ denote the momenta of the positive or 
negative lepton and k~ and k2 those of the two jets. Since 
T,~ is symmetric in k~ and k2, it is not necessary to 

* Here, tensors  are defined with respect  to the  g roup  of spatial  
ro ta t ions  
** This  r emains  true if one does no t  use  the na r row  width  approx-  
ima t ion  for the  W. At  tree level, the  finite W width  does no t  
con t r ibu te  to the  CP2P odd par t  of  &r/dO, where only squared  
W p ropaga to r s  occur  

distinguish experimentally between the jets. A similar ob- 
servable can be built with unit momenta: 

(K• ~2)j • 

Ik_+ xkll Ik+_ xk21 
+ {i ~--~j }, (16) 

and requires only angular measurements in the laboratory 
frame. Observables of the type (15), (16) have been studied 
extensively in [5, 6, 14, 16] and have been used by experi- 
mentalists to search for CP violation in r pair production 
at LEP [7]. If one integrates over the whole phase space in 
the calculation of ((9), it is sufficient to consider only the 
components T33 or 7~a3, as shown in [6]. The correspond- 
ing values 6gi of (8) for the different form factors are given 
in Table 1 for 190 GeV and 500 GeV c.m. energy. At 
190 GeV, one will see a one-standard-deviation-effect if 
the form factors have a magnitude of some parts in 0.1, the 
best sensitivity being obtained for f6 v, whereas for NLC 
values of 0.02 to 0.04 would already be sufficient. 

Changing signs in the definition of the above tensors, 
one obtains observables U~j and 0ij, which are sensitive to 
absorptive parts of CP even couplings [14]: 

U~ = +_[(k+ + kl)i(k_+ x k l ) j+(k+  +k2)i(k+ x k2) j 

+ {i ~--~j} 3, (17) 

r-~ ~ ( f , + x f q ) j  ~ ( f , + x f ~ ) j  

+ {i <---~j} ]. (18) 

Our numerical results for these observables are listed in 
Table 2. Here, at 190 GeV, imaginary parts of f ~  or 
f3 v would produce visible effects if they were at least 
between 0.4 and 0.8, and the other form factors are prac- 
tically unmeasurable. At high energy, the situation is 
somewhat better, where imaginary parts of some 0.1 
would be detectable and f2 v could be measured at the 
percent level. 

A different set of observables, sensitive to CP even or 
odd couplings, has been studied in [17]. There, anomal- 
ous form factors are required to be at least of the order of 
0 . 2 . . .  0.9 to be visible at 200 GeV, except f o r f  v ,  which is 
yet harder to detect. For  NLC at 500 GeV, these values 
are found to decrease to 0 . 0 1 . . .  0.04 and even to 5"10 -~ 
f o r f  f .  Similar results for both real and imaginary parts of 

Table 1. One-standard~leviation-accuracies 6gi of (8) obtainable in 
the measurement of anomalous form factors with the observables 
T33 (15) and ~Pza (16). We assume an integrated luminosity of 
500 pb- 1 for LEP2 and of 10 fb- I for NLC. Errors due to numerical 
integration are below 15% at 500 GeV and below 5% at 190 GeV 

(9 ~/s[GeV3 Ref~ Ref z RefJ Ref z ReF Ref z 

7"33 190 > 1 0.66 0.17 0.12 >1 0.64 
500 0.029 0.024 0.025 0.020 0.12 0.07 

Ta3 190 >1 >1 0.18 0.12 0.45 0.28 
500 0.041 0.037 0.035 0.027 0.024 0.021 



Table 2. Same as Table 1, but for the 
observables U3a (17) and 033 (18). Integ- 
ration errors are smaller than 20% at 
500GeV and smaller than 10% at 
190 GeV 

[GeV] 
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Imf[  I m f  z Imf] Imf2 z Imf]  Imf  z Imfd Imf  z 

u33 190 0.82 0.43 > 1 > 1 > 1 0.66 > 1 > 1 
500 0.12 0.097 0.0084 0.0084 0 .39  0.24 0.38 > 1 

0~3 190 > 1 0.80 > 1 > 1 0.72 0.49 > 1 > 1 
500 0.13 0.11 0.017 0.016 0.13 0.11 0.27 0.15 

the couplings have been obtained in [18], where also the 
decay channels with two leptons were considered. 

The authors of [15] proposed the measurement of an 
asymmetry in lepton-dijet-events, corresponding to an 
observable which in the channel with a negative decay 
lepton reads 

(9 - = s ign(k-  " (kjetmax X kjetmin)) ,  (19) 

where by definition Ikjetmaxl > ]kjetmin[. We are, however, 
not able to reproduce their numerical results. In both their 
and our calculation, this asymmetry receives no contribu- 
tion from f7 v, which we also checked analytically. At 

x/s  = 200 GeV, we find for the asymmetry 

< (9 - > = ~ j etmax/jetmin = __ 0.0049 (1)fd -- 0.0074 (2) f6 Z, 

(20) 

where we have indicated numerical integration errors 
(90% C.L.) in parentheses. In [15] a different parametrisa- 
tion of the three gauge boson vertex is used, which is 
related to ours through 

fg=3~ +cosZ Ow$ ~, f7~=�89 g~ 

+;z, gz, (2a) 
f6Z=cos2,9 w 

assuming that the charge e is taken as positive in [15]. 
With these parameters our result (20) reads 

~ j e t m a x / j e t m i n  = _ _  0.0049 3 ~ - 0.0096 3 z 

- 0.0038 S ~ - 0.0074 c{ z, (22) 

whereas in [15] (bottom of p. 582) one finds 

~ j e t m a x / j e t m i n  = 0.31 C~ ~ + 0.626 Z + 0.24 6~ + 0.48 SZ, 

(23) 

which is roughly a global factor of 65 larger and differs by 

the global sign. Comparison at different xfs  (cf. Table 7 of 
[15]) shows this factor to behave like s. Assuming 
n = 3000 semileptonic events, an asymmetry can be meas- 

ured to a precision of 1/x/~=0.018, so that with our 
values (20), (22), this observable is rather insensitive to 
anomalous couplings. 

4 Optimal observables 

We wish to treat the general problem of measuring the 
value of a physical parameter  9 in a reaction where it gives 
a small contribution to the differential cross section. We 
require that it be possible to work with a power series 
expansion in 9 and keep only the leading nontrivial terms. 

One way to determine 9 is by the measurement of the 
mean value of an appropriate observable. The authors of 
[8] gave the general expression of the observable for 
which the statistical error in the determination of g is 
minimal. In [9] it was shown in a somewhat different 
context that this observable contains the full information 
on 9 in the given reaction. We will extend the argument to 
several unknown parameters and pay special attention to 
the case where for 9 = 0 the observable has a nonvanishing 
expectation value. 

The results of an experiment which measures a specified 
set of phase space variables (momenta or polarisations) 
for a number of events can be characterised by a random 
variable x with a probability density F(x, 9~) depending 
on the parameters 9i(i = 1 . . .  m). The parameters should 
be independent in the sense that one cannot decrease their 
number in the amplitude of the reaction by a pure re- 
definition. An estimation of the 9~ is then obtained with 
a set of functions 7i(x). We will restrict ourselves to unbias- 
ed estimators, i.e. require 

E [7 i ]  = 9~, (24) 

where E denotes the expectation value. If there is only one 
parameter, the uncertainty in the estimation may be meas- 
ured by the variance of 7. As a generalisation, we consider 
the ellipsoid in the space of the 7~ which is given by 

7; V(7)~ ~7~ = 1, (25) 
i , j  

where 

V(7)ij = Coy (7i, 7j), (26) 

is the covariance matrix of the estimators and 7~ = 7 i -  gi. 
It is equal to the one-standard-deviat ion ellipsoid if the 
?i are distributed as a multivariate Gaussian.* One can 
show (cf. [19]); to make our article self-contained, we give 
a proof in Appendix A) that for any unbiased estimation 
this ellipsoid fully contains the ellipsoid given by 

7~ IijT~ = 1 (27) 
i , j  

with the so called information matrix 

l~j=EIo~ln F ~-~- ln (28) 

* As we will see, this is the case if one estimates the 9i from the mean 
values of observables 
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In the case of one parameter, this reduces to a lower 
bound for the variance of the estimator, known as the 
Rao-Crambr-Frdchet bound [4]. A set of estimators is 
called joint efficient if V(7)-1 =I ,  the ellipsoid given by 
V(y)- 1 is then the smallest possible, and one may consider 
the estimation to be optimal. 

We will now show that, to lowest order in the g~, joint 
efficient estimators can be obtained with appropriately 
chosen integrated observables. Such observables therefore 
contain all information about the g~ that can be extracted 
by any method, for instance by a maximum likelihood fit 
to the measured distributions.* 

4.1 Analysis not making use of the total event rate 

Let the experiment be carried out with a fixed number n of 
events, discarding the information contained in the total 
event rate. Experimentally, the absolute normalisation of 
the spectra need not be known then. If ek is the set of 
measured phase space variables for the k-th event, x is the 
n-tuple of the ek and the density function is given by 

n 

F( r  . . . . .  r  = 1] f(qSk) (29) 
k 

with 

aft 
f ( r  de  = ~ do-" (30) 

Expanding the differential cross section to first order in g~ 

d ~ = S o + ~  S~,igi, (31) 

straightforward calculation gives, to lowest order, 

1 S~,~S~,j ~dc~S~,~IdOS~,j (32) 
- l d O S o  j 'dr  S ~  (j" dr 2 

and hence 

I=nb. (33) 

To determine m parameters Y~, one may choose m ob- 
servables (91(r and measure their mean values 

1 "  
(~i = -  Z (91(r (34) 

n k 

in the same experimental run. Expanding to first order 

E [(9,] = Eo [(9d + ~ c,jgj, (35) 
J 

* In the limit of a large number of events, the maximum likelihood 
method gives estimators 71 which are unbiased, obey a multivariate 
Gaussian distribution, and are joint efficient [-19] 

where Eo [(9i] is the expectation value when all g~ are zero, 
one has, provided that the coefficient matrix c is nonsingu- 
lar, 

gi ~-- 2 C'J 1 (E [ (g j ]  --  E 0 [ (g j l  ) 
J 

and thus an estimator 

(36) 

7i = ~ c,] 1(C~- Eo [(9i]) (37) 
J 

with E[7~] =g~ and, in matrix notation, 

v ( ~ ) =  1 c -~  �9 v ( ( 9 ) . ( c - ~ )  ~, (38) 
n 

where V((9) is the covariance matrix of the (9~. Expansion 
in gi gives 

E [(P,] = I da(9, = I dr  
I do- f de  So 

+~ / / I  dr (9i I dOSo(gil dr  )g" (39/ 

the expression in large parentheses being cq, and 

l/ .... I dq5 S~ (9i(9J I dqSS~ (Pil dr176 (9J (40) 
UY)'J= I dr (I dr 2 

Since for large n the mean values 6~ obey a normal  
distribution, the estimators 7i are distributed as a multi- 
variate Gaussian. 

For the case of a single parameter, the optimal observ- 
able is (9=$1/So, as found in [8]. We show now that in 
generalisation of this the set of optimal observables for the 
case of m parameters reads 

(9i= ~ (i=1 . . .  m), (41) 

which intuitively may be regarded as the signal to back- 
ground ratio in the expansion (31) of the cross section. 
Indeed, from (39) and (40), one sees that for these observ- 
ables 

c = V((9) = b, (42) 

where b is defined in (32), so that with (38) and (33) we 
have 

V(~)- 1 =nb = I (43) 

and thus a joint efficient estimation of the gi. 

4.2 Analysis making use of the total event rate 

Our previous calculation is valid for both vanishing and 
nonvanishing Eo[(gi]. In the second case, however, the 
gi can give a contribution to ~ da, i.e. to the total event 
rate. To exploit this additional information, let us assume 
the experiment to be run for a fixed period of time. The 



expected number n of events follows a Poisson distribu- 
tion 

E[n]" -zt,] (44) 
Pn= n! e , 

with the mean value 

E [n] = 2,r ~ da, (45) 

where L~ is the integrated luminosity. The probability to 
have n events with coordinates ~1  . . . .  , ff)n is 

n 

fi(n, ~ . . . .  , On)I] d~k=Pn 1-[ (f(#)k) d~bk) (46) 
k k 

with f as in (30). An estimator 7~ is now a function of n 
and the Ck' For the calculation of the information matrix 
Y (28) we need 

--~ lnY 1 0  p.+~" 0 lnf(r (47) 

where, using that to lowest order 

1 0 E[n] Idr 
E [n~ ag~, = I de  So ' (48) 

we rewrite the first term as 

P, ~gi p" = ( n -  E In]), (49) 

and after some manipulation find 

f =  E [n] d (50) 

with 

d. . -  1_ SI,iS1,j (51) 
Sdr162 So 

The term with S dr "S dr dq~ So) 2 present in the 
information matrix I of (33) in the previous subsection, has 
been compensated by the contribution of (49). 

The ellipsoid given by the new information matrix ]'is 
contained in the one defined by 1 if one sets equal E In] 
and n in their respective expressions (50) and (33). To see 
this, we write the difference between d and b as 

. , . fdOS, ,  ~ deS ,  j 
aij:=au-~ I dO So" I dO S'o =ai" aj (52) 

with 

_S dr (53) 
at f d~b So ' 

and obtain for an arbitrary vector u the inequality 

uTbu=uTdu--uTau=uTdu--(~uiai)2<uTdu. (54) 
i 

To have equality for all u, one must require all a~ to be 
zero. This means that the ellipsoid defined in (27) with 
I = nd is indeed smaller than the one with I = nb unless all 

de  Sl,i vanish, in which case the total event rate carries 
no information about the g~. It should however be borne 
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in mind that in real life the estimation described in this 
subsection will be affected by systematic errors connected 
with the absolute normalisation. 

We now show how a joint eff• estimation with the 
new information matrix I may be achieved by measure- 
ment of the same observables as above, when a modified 
analysis is performed, which instead of the mean values 
6~ uses their product with the observed number n of 
events* 

n 

k 

We have 

(55) 

E[n6,] =E[n] E[O~] =s dr (9, + ~  gj ~ dr 
1 

= Eo [n6i] + Y', cuoj, (56) 
1 

where we define 

g,j = &o ~ dq~S1,jCi. (57) 

With the optimal observables given by (41), (cu) is a posit- 
ive definite matrix which, therefore, can be inverted and 
we get 

9i=~ ci] ~ (E [n6yl  --Eo In 6i]).  
1 

This suggests the new estimators 

(58) 

~ = ~ ~i] l(n~j - Eo [n6j]). (59) 
J 

The covariance matrix of the quantities n6~ is found to be 

Coy(n6,, n6;)=E[n]E[(gi(Pj] = ~ ~ de  So (giCj, (60) 

which for our optimal observables (41) is equal to the 
coefficient matrix cu (57), so that we obtain from (51), (50) 

dq5 SI,,SI,j__ E[n] d u =~ j ,  (61) v( )6 = I So 

q.e.d 

4.3 Effects of phase space cuts 

Some remarks may be made about phase space cuts. 
Usually, these cuts are applied both to da and to the 
normalisation integral ~ do- in (30).Thus it is clear that in 
this case our method will give again the optimal observ- 
ables, but for the information obtainable with the above 
cuts. 

The analysis described in the previous subsection is 
clearly optimal, given a certain luminosity. Applying cuts 
one can only lose information and thus the error ellipsoid 

* Setting d~ = 1, this reduces to the measurement of the total cross 
section 
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Analysis with 
Analysis with [ normalised 

total event rate, distributions, 
no cuts no cuts 

I 
if all f de Sl,i vanish 

1 
Analysis with 

Analysis with I normalised 
total event rate, distributions, 

cuts same cuts 

Fig. 3. Different types of analyses with optimal observables. The 
loss of information and corresponding increase of the error ellipsoid 
is indicated by arrows 

can only become larger. To see this explicitly we use (61) 
to write (25) of the error ellipsoid as 

u~ V(~)~jlui=~ ~ ~ de (u~Sl'~)~2 1. (62) 
i.j i So 

Applying a cut is tantamount to restricting the domain of 
integration in the second expression, which can only de- 
crease then. This can be compensated by increasing the 
length of the vector u, so the ellipsoid becomes indeed 
larger. 

Furthermore, one can only lose information when 
going from the analysis using the total event rate to the 
one of Subsect. 4.1 using normalised distributions. If an 
analysis using only normalised distributions is improved 
or not by imposing cuts can only be decided on general 
grounds if all f d~Sl,i  are zero. As we have seen in Sub- 
sect. 4.2, the error ellipsoid is then the same as for the 
analysis using the total event rate when taking the number 
of events to be n = 50 f do-, and we can again apply our 
above argument.* 

We have summarised the situation in a diagram 
(Fig. 3) where we always assume that optimal observables 
(34), (55) are used. 

5 Optimal observables for e + e - ~  W + W -  

We will now investigate the optimal observables for the 
measurement of three boson couplings with semileptonic 
events in e + e - ~ W + W -. 

If the charge of the parent quarks can be tagged for the 
jets, the set of optimal observables will be 

SF,~(r (63) G •  * + 

Here S ~,i and S~ are taken from the expansion (31) of the 
differential cross section da + for the appropriate W + W -  
decay channel (5) or (9). We would like to emphasise that 

* In our application of optimal observables to e+e-~ W +W- we 
find the terms with ~dqSSl.~ in the information matrix (33) to be 
numerically negligible if they are not zero for symmetry reasons 
(cf. section 6), so that even then one would not expect the sensitivity 
to be improved by cuts 

the phase space variables q5 can be chosen as any set of 
coordinates convenient for the experimentalist.* 

Without charge tagging, one has experimental in- 
formation in a reduced phase space. If the W -  decays 
hadronically, one may for example replace in r the mo- 
mentum kn of the d-type quark with the momentum kl of 
the jet with bigger energy in the laboratory frame. The 
cross section for this modified phase space is the sum of 
the contributions where the parent quark of this jet is 
either of d-type (kl=kd, k2=kff) or of ~i-type (kl=k~, 
k2 = kd), denoting by k2 the momentum of the jet with 
smaller energy. The optimal observables now read 

s t ,  i(k. = k l )  + S~, i(k. = k2) 
(9~+ - S~ (ka = kl ) + So + (k~ = k2) ' (64) 

where the dependence on the other phase space variables 
is not displayed. Phrased in a different way, one has to 
sum in the numerator  and the denominator of (63) over 
the expressions obtained when the coordinates of the 
d-type quark in Sl+,i and So+ are set equal to those of either 
of the two jets. It is therefore not even necessary to single 
out one of the jets kinematically. In the same way, the 
observables C~- for hadronic W + decay are constructed, 
and then C~ + and (9~- are taken together according to (10). 
Note that a similar summation allows to write down 
optimal observables for leptonic decay of both Ws, where 
one has a different ambiguity in phase space, because due 
to the escaping neutrinos the kinematics cannot be fully 
reconstructed 1-12]. 

We wish to make a remark concerning the region of 
forward scattering of the W- with respect to the e-  direc- 
tion. At NLC energies one can expect this region of phase 
space to be affected by experimental cuts, because in the 
laboratory frame the direction of the W decay products 
tends to be close to the W direction. In the amplitudes, this 
region is enhanced by a factor of lit coming from the 
neutrino propagator in the t-channel diagram, the effect 
being considerable at high energy. On the other hand, as 1/t 
appears squared in So but only linear in the interference 
terms S~,~, our optimal observables (63), (64) are suppressed 
by t in the same region. The effect cancels in the integral 

SI,iSI,j (65) 
y dq5 So 

In Subsect. 4.3 we have discussed for which types of 
analyses this expression determines how the error ellip- 
soid of the estimators is changed by cuts (cf. (62)). In these 
cases the loss of information will not be as strong as the 
loss in the total number of events, if events in this phase 
space region have to be cut away. 

6 Results 

Before we discuss our numerical results some remarks are 
in order about their presentation. In the following we will 

* A FORTRAN routine with the expressions for the observables in 
the phase space parametrisation of [12] may be obtained from the 
authors 



always assume that an analysis is made using only nor- 
malised distributions, not the total event rate. 

In a most simple analysis one takes all anomalous 
form factors except one to be zero. This parameter can 
then be estimated from the single measurement of 

E [(9i] = Eo [(9i] + Cugi (66) 

and the standard deviation of this estimation is 

6 9 i = ~  / V((9)u , (67) 
ICul Xl n 

which we have already used in Sect. 3. If all other 9i are 
indeed zero, this is an efficient estimate if one uses the 
optimal observable St, jSo,  so the quantity 69~ in (67) 
cannot be smaller for any other observable. In practice, 
one may assume (66) to hold approximately if for a given 
i the off-diagonal elements c~j in the full expansion (35) of 
E [(9~] are negligible compared to c,. One can then deter- 
mine 9~ independently of the other form factors, which 
simplifies the analysis. More generally, if for a subset of 
the 9i the off-diagonal elements of c with the remaining 
form factors are negligible, this subset can be analysed 
independently. We shall see that this is often the case, 
particularly in the basis of the left and right handed form 
factors introduced in Sect. 2. 

If correlations are important, one needs to consider 
the full covariance matrix V(7) of the estimators 7~, which 
defines the one-standard-deviation ellipsoid (25). Its 
centre is the origin of the coordinate system with the 
variables ~ = 7i-9~, and its intersection with the 71-axis is 
given by 

1 
39~ = (68) 1 

As we have seen in subsection 4.1, for the optimal observ- 
ables (41) we have V(7) -1 =rib and b=c= V((9) (cf. (43) 
and (42)). In this case eli > 0 and therefore 

1 
691 = 59i - (69) 

i.e. the errors 69~ give also the intersections of the full 
one-standar&deviation ellipsoid with the axes. 

The standard deviation of the estimator 7~ in the pres- 
ence of all other form factors is of course given by 

A g i = ~ .  (70) 

Geometrically this value is obtained by projection of 
the ellipsoid on the corresponding axis. It is evident from 
Fig. 4 that both g)9~ and Ag~ give an imperfect picture of the 
situation if correlations are large. In this case it would be 
appropriate to work with linear combinations of form 
factors for which the correlations are smaller (this is in 
part realised by the left and right handed combinations of 
(3)). As shown in Fig. 4 it is rather 6gi than Agi that 
indicates how large the standard deviation is for the com- 
bination which can be measured best. In this spirit we will 
use the 6g~ in our presentation, but also give the complete 

A g ~ ~  
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Fig. 4. One-standard-deviation-ellipsis for an estimation with opti- 
mal observables in the case of two estimated parameters. 69i gives 
the interaction with the y~-axis, Agi the projection 

covariance matrix V(J for one case (Table 9). We shall 
further discuss the correlations between the different 
observables (9i. They are to be taken from the coefficient 
matrix c which for optimal observables is equal to the 
covariance matrix V((9). 

Let us now present our results in some detail. For 
simplicity, we shall only writefi whenever we want to refer 
simultaneously to the real and the imaginary parts of 
f~ a n d f  z. 

At , /~  = 190 GeV, we find for most form factors values 
of 6f between 0.05 and 0.15 (cf. Table 3). The smallest 
values are obtained for 6fa, 6f6 and 6f7, whereas for 
fs only a poor resolution can be achieved. In the case of 
CP even form factors, the results are somewhat better for 
the real than for the imaginary parts, for the CP odd ones 
the opposite is true. The complete coefficient matrix 
c=  V(O) is given in Table 4. By construction of our ob- 
servables, c is block diagonal, the blocks corresponding to 
the form factors with the same transformation properties 
under CP and CPT, as discussed in Subsect. 3.1. Off- 
diagonal terms cq typically have the same order of magni- 
tude as c, and c j j, most often they are smaller and in no 
case greater by more than a factor of 2. The off-diagonal 
terms off5 are, however, negligible compared to the diag- 
onal terms off1, f2 and fa, so that to a good approxima- 
tion one can determine these last three form factors with- 
out considering fs. Similarly, one may neglect the off- 
diagonal terms off4 when measuring f6 and fv. 

To see which improvement can be achieved with 
charge tagging for the jets, we have also calculated the 
matrix c for the observables (63) without summation over 
the jet ambiguity. We find that the correlations between 
different observables are not much changed and that with 
charge tagging the uncertainties 6f. are smaller by a factor 
up to 1.8 (except for Re f6 ~ and Re f6 z, where one would 
gain a factor of 2.7 and 2.2 resp., cf. Table 5). This is to be 
confronted with additional experimental errors and the 
loss in detection efficiency that would presumably be 
introduced. 

The same calculation allows to assess the sensitivity of 
an analysis using events where both W decay into elec- 
trons or muons. Compared with semileptonic observables 
with tagging of the quark charge, i.e. full reconstruction, 
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Table 3. Errors 5fi (67) for optimal ob- 
servables without charge tagging for the 
jets. 6J~ is the standard deviation in the 
estimation of J~ if all other anomalous 
form factors are set to zero. It also gives 
the intersection of the full one-stan- 
dard~leviat ion ellipsoid with the axis cor- 
responding to f (cf. Fig. 4). The assumed 
number  of events corresponds to an integ- 
rated luminosity of 500 p b -  1 at LEP2 en- 
ergies (175 . . .  210 GeV) and of 10 fb -1 
for NLC (500GeV). Numerical integra- 
tion errors, estimated by the integration 
routine RIWIAD, are smaller than 1.5% 
at 90% C.L. 

v/S [GeV] Ref• R e f  z R e f l  R e f  z Ref3 ~ R e f  z Ref~ R e f  z 

175 0.27 0.17 0.49 0.33 0.12 0.078 0.49 0.28 
180 0.22 0.15 0.29 0.20 0.093 0.066 0.36 0.21 
190 0.16 0.11 0.13 0.10 0.069 0.052 0.24 0.14 
210 0.098 0.082 0.050 0.043 0.048 0.041 0.15 0.093 
500 0.0034 0.0045 0.0002 0.0002 0.0029 0.0038 0.015 0.010 

~/~ [GeV] !mfZ I m f  z Imf2 ~ I m f  z Imf~ I m f  z I m f [  I m f  z 

175 0.29 0.17 0.64 0.38 0.16 0.095 0.59 0.34 
180 0.24 0.15 0.38 0.23 0.13 0.079 0.43 0.25 
190 0.18 0.11 0.18 0.11 0.099 0.063 0.29 0.17 
210 0.13 0.082 0.074 0.049 0.072 0.049 0.19 0.11 
500 0.0093 0.0069 0.0005 0.0004 0.0071 0.0055 0.017 0.011 

x/~ [GeV] Ref~ Re f  z RefJ  Ref6 z Ref7 ~ Re f  z 

175 0.28 0.17 0.15 0.082 0.25 0.15 
180 0.23 0.14 0.14 0.078 0.18 0.10 
190 0.18 0.11 0.13 0.071 0.11 0.067 
210 0.13 0.089 0.11 0.064 0.064 0.040 
500 0.015 0.012 0.018 0.012 0.0023 0.0018 

x/~ [GeV]  Imf~ Imf4 z Imf6 ~ I m f  z Imf7 ~ I m f  z 

175 0.21 0.12 0.065 0.039 0.18 0.11 
180 0.17 0.11 0.061 0.038 0.13 0.082 
190 0.13 0.085 0.057 0.037 0.081 0.053 
210 0.10 0.068 0.054 0.036 0.046 0.032 
500 0.014 0.010 0.012 0.0094 0.0016 0.0014 

Table 4. The coefficient matrix c from (35) 
for observables without charge tagging 
for the quark jets at 190 GeV. All matrix 
elements are to be multiplied with 10 -3 . 
As is seen from (35) and (42), an element 
c u gives the contribution of a form factor 
gj to the expectation value of (91 and fur- 
thermore is the covariance of the observ- 
ables r and (gj. The matrix c is block 
diagonal, the blocks corresponding to the 
form factors with the same transforma- 
tion proper t ies  under CP and CPT. 
(a) C P + ,  CPT+; (b) C P + ,  CPT-; 
(c) CP-, CPT"+; ( d ) C P - ,  CPT"-. We 
display these four blocks, all other matrix 
elements are zero. Since c is symmetric, 
only matrix elements in the diagonal and 
above or below are listed. The relative 
errors in numerical integration are not 
greater than 3%, except for off-diagonal 
terms with f5 and f4, which generally are 
small, so that relative errors are larger. 
The absolute errors are however below 
0.2.10 -3 for off-diagonal terms with 
f5 and below 0.4- 10 -3 for those withf4 

Ref~ Re f l  z Re f2 ~ Re f  z Ref~ Re f  z Re f5 r Re f5 z (a) 

14 17 - 14 - 15 - 2 2  - 2 2  0.71 0.4 Ref~ 
26 - 1 5  - 2 3  - 2 4  - 3 6  0.15 0.32 Re f  z 

19 20 31 29 - 1.1 0.29 Ref~ 
Imf~ 10 33 31 52 -0 .42  0.3 Re f  z 
I m f  z 16 27 70 67 -2 .1  4.3 Ref~ 
Imf~ - 7.3 - 11 9.8 121 - 1.4 1.3 Re f  z 
I m f  z - 11 - 20 15 25 5.8 8.3 RefJ  
Imf~ - 9.6 - 15 14 22 34 17 Ref  z 
lmf z - 15 - 2 4  22 35 54 85 

I m f J  0.73 1.5 -0 .99  - 1.2 - 1.3 - 2.2 4 
I m f  z -0 .53  -0 .54  0.29 1.4 1.8 2.6 6.6 

(b) 

12 

(d) I m f :  I m f  z ImfJ I m f  z I m f  4 Imf  z 

10 16 2.8 8.4 --0.01 2.6 Ref~ 
26 5.1 16 --0.46 3.1 Re f  z 

20 33 5.4 10 Ref~ 
Imf4 ~ 19 67 12 25 Re f  z 
I m f  z 26 47 26 42 Re f7 ~ 
Imf6 r 1.9 - 5.8 103 75 Re f  z 
I m f  z - 5.9 - 12 145 248 
ImfT~ 0.5 - 0.44 45 64 51 
I m f  z - 3 . 5  - 6 . 5  66 107 74 117 

Imf~ Imf~ z I m f ]  Imf2 z Imf~ Imf3 z Imf~ I m f  z 

Ref~ Re f  z Refd Re f6 z Ref~ Re f7 z (e) 
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Table 5. Same as table 3, but for observables with charge tagging at 
190 GeV 

Re fir Ref  z Re f] Re f2 z Ref~ Re f3 z Ref5 ~ Re f5 z 

0.11 0 .075 0 .11  0.075 0.057 0.041 0 .19  0.12 

Imf~ I m f  z Imf ]  I m f  z Imf3 ~ I m f  z Imf~ I m f  z 
0.11 0 .067 0 .11  0 .073 0.068 0.043 

Ref~ Ref  z Ref~ Re f6 z RefT~ Ref  z 
0.11 0 .069 0.049 0.032 0.060 0.040 

Imf ]  I m f  z Imf~ Imf~ z Imf~ Imf~ 

0.10 0 .062 0.042 0.028 0.057 0.038 

0.21 0.12 

the 6fi would be larger by a factor  x / 6 ~  2.4 due to the 
branching  ratios, which makes  them already worse than 
the semileptonic ones without charge tagging (except for 
Ref6L Fur ther  losses will be in t roduced by summat ion  
over  the ambigui ty  due to incomplete  kinematical  recon- 
struction. We conclude that  with the use of opt imal  ob- 
servables the purely leptonic channels are in theory not  as 
good  as those with a lepton and a dijet for the study of 
anoma lous  couplings. In  practice one will, of course, use 
all possible channels for such a study, be it only to have 
a cross check on systematic  uncertainties. Clearly, the use 
of opt imal  observables  should be advantageous  anywhere.  

At lower energy, the general s i tuat ion is the same as at 
190 GeV, with the uncertainties 6fi at 175 GeV being 
larger by factors between 1.5 and 2.5 (cf. Tables  3 and 6). 
This is because near  threshold the ampli tudes  with an 
intermediate  ? or  Z are suppressed by the velocity fl of the 

W relative to the v-exchange d iagram of Fig. 1. The 
statistics is hardly lower than  at 190 GeV, as we men-  
t ioned in Sect. 2. Except ions are c5f6, which remains stable, 
and 6f2 with considerable losses at low energy, which can 
also be explained with the fl-dependence of the corres- 
ponding  ampli tudes  (cf. Table  4 of [12]). Note,  however,  
that  at 175 GeV f6 cannot  be measured  exclusively, the 
contr ibut ion of f7 not  being negligible. As for the CP 
conserving couplings, 6fz and 6f5 are quite uninterest ing 
at this energy. 

Inversely, going f rom 190 GeV to 210 GeV at LEP2  
would increase the sensitivity by a factor which is abou t  
2.4 for f2 and lies between 1.2 and 1.8 for the other  form 
factors (except for f6, which again barely changes). 

Fo r  N L C  parameters ,  one obtains  significantly bet ter  
results (cf. Table  3). Namely ,  all 6fi are then below 0.02, the 
best values being achieved for 6f7, 6f3, g)fl and above  all 
for 6f2, which is now a few parts  in 10 -4. A par t  of this 
improvemen t  is due to the assumed increase in luminosi ty 
of N L C  over LEP2,  which contr ibutes  a factor 

1 / w / ~ 0 . 2  to the ~f/. The dominance  off2 andfT,  whose 
off-diagonal elements c~j generally are greater  than  the 
diagonal  elements of  o ther  form factors by an order  of  
magni tude,  can be unders tood  f rom the appearance  of 
a factor Mw 2 in the vertex function (1), which causes the 
corresponding ampli tudes  to grow with a higher power  of  
the m o m e n t a  (Table 4 of [-12]).* One should however  not  
forget that  the mass  scale Mw has been chosen for con- 
venience, and that  in an effective Lagrang ian  app roach  

*The gains for 6f7 are not as large as for 6fz, becausef7 contributes 
to amplitudes with two transverse W and f2 to the amplitude with 
two longitudinal ones, which further favours f2 at high energy 

Table 6a~!. Same as Table 4, but for ~ = 175 GeV. Relative errors in numerical integration are not greater than 4%, except for off-diagonal 
terms with fs, where absolute errors are below 0.05.10 -3, and off-diagonal terms with f4, where no absolute error exceeds 0.5- 10 -3  

Ref~ Ref z Ref~ Ref z Ref~ Re f3 z Ref~ Ref z (a) 

5 7.3 --2 --2.7 --7 -8.6 0.15 0.19 Re f [  
12 -2.7 -4.5 - 9  - 15 0.005 0.11 Ref z 

1.5 2 5.3 6.4 -0.13 0 Refd 
Imf~ 4.3 3.4 6.6 12 -0.04 0.11 Ref z 
I m f  z 7.2 12 27 33 -0.52 1 Re f3 ~ 
Imf] -1.3 -2.1 0.92 61 -0.37 0.77 Ref z 
I m f  z -2.1 -3.8 1.5 2.6 1.5 2.4 Re f] 
Imf3~ 3.4 - 5.7 2.8 4.6 15 4.7 Ref z 
I m f  z - 5.6 - 9.7 4.6 7.8 25 41 
Imf] 0.15 0.38 -0.12 -0.13 -0.35 -0.58 1.1 
I m f  z -0.17 -0.15 0.035 0.19 0.49 0.71 1.8 3.3 

(b) Imf~ Imf~ z Imf] Imf z Imfd Imf3 z Imf~ Imf5 z 

Re f4 ~ Reyd eefd Redd Red; RedZ (e) 
4.6 7.5 1.1 3.8 -0.02 0.71 Re f4 ~ 

13 2.1 7.4 -0.085 0.83 Ref z 
16 27 2.8 5 Re f6 ~ 

Imf]  8.6 55 5.5 11 Re f6 z 
Imf  z 13 24 5.7 9.9 Re f7 ~ 
Imfd 1.0 --2.4 89 18 Ref z 
I m f  z -- 2.7 - 6.5 139 240 
Imf(  0.21 -0.14 20 32 11 
I m f  z -0.86 - 2  32 54 18 29 

(d) Imf4 r Imf  z Imfd Imf6 z Imf4 Imf z 
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a more natural choice would be the scale of new physics 
responsible for the anomalous couplings, so one might 
expect these form factors to be smaller than the others if 
that scale is much larger than Mw. 

As a general result we obtain that the uncertainty in 
the determination of the couplings is less for the j~z than 
for the corresponding f r and that off-diagonal terms be- 
tween them in the matrix c are comparable to the diagonal 
ones. This can partly be explained by the fact that at low 
energy the Z channel is enhanced by the ratio ~ (4) of the 
Z and the ~; propagators, which is between 1.3 and 1.4 in 
the energy range we are investigating, but the effect, al- 
though smaller and with exceptions, persists at 500 GeV, 
where ~ is practically one. 

We have also calculated the coefficients c~j and the 
uncertainties 6j~ in the basis of the form factors f L and 
f R (3), which are the natural ones to use in the reaction we 
are considering (cf. Tables 7, 8 and 9). At LEP2 energies 
the values of 6f~ L are very close to those of the correspond- 
ing 6J~ r. The correlations between different left handed 
form factors are similar to those in the ~-Z basis, except 
t h a t f ~  can be obtained independently of all other coup- 
lings (but only to a low precision). An important reduction 
in parameter space is however possible thanks to the fact 
that, up to few exceptions, the right handed form factors 
may be ignored for the determination of the left handed 
ones, as can be seen from the matrix r in this basis (Table 
8). The f R themselves are hardly measurable at LEP2 
energies (the 'best' sensitivity being obtained with respect 
to Ref3 R and Imf6 a). 

At 500 GeV, the results for the 6f~ L are again similar to 
those for their 6j~ r counterparts, but one can no longer 
neglect the influence of all f R in their measurement. On 
the other hand, the values for the 6f~Rare now acceptable, 
too, being at most some parts in 10 -2, and for 6f~ and 

6f7 R they are quite good. Still, the errors in the determina- 
tion of right handed factors are clearly larger than for their 
left handed partners, except for the real parts of CP even 
couplings. 

An exclusive measurement of the left or right handed 
combinations of form factors could of course be per- 
formed with longitudinally polarised beams. For left 
handed e- and right handed e + one would have twice as 
many events as for unpolarised beams, assuming the same 
integrated luminosity of 10 fb -1. The values of the 6f~ L 
turn out to be approximately a factor of 2 smaller than 
without polarisation. For right handed e- and left handed 
e + we find a similar sensitivity to the 6J~ s (compared with 
the 6f~ L for polarised beams, the 6f~ R are smaller by a fac- 
tor between ! and 1.5 in most cases, and compared with 
the 6J~ R for unpolarised beams they are reduced by a factor 
between 4 and 12), but one would have only about 350 
semileptonic W + W -  decays, and it is questionable 
whether a satisfactory analysis could be performed with 
such an event sample. 

If the ~ d~b Sl,i do not vanish, i.e. for real, CP even form 
factors, a theoretically better estimation is obtained when 
instead of measuring mean values of observables one 
makes additional use of the information contained in the 
event rate, as we have shown in Sect. 4. We have cal- 
culated the matrix d of (51), which replaces b in the 
information matrix (50) for the modified analysis of our 
optimal observables. Both at LEP2 and at NLC energies 
we find that the difference between dij and cij is small 
compared with c~, normally increasing with energy. Nu- 
merically, the values of [(d~j-cij)/c~j[ are smaller than 10% 
and most often not larger than 5%. Exceptions are the 
off-diagonal terms between f5 and the other form factors, 
the deviations do however not exceed 40% unless dij and 
eli are negligibly small anyway. The uncertainties 6f~ in the 

Table 7. Same as Table 3, but in the basis of the left and right handed form factors defined 
in (3) 

, ~  [GeV] Ref L Ref R Ref L Ref~ Ref3 L Ref~ Ref L Reffi 

175 0.26 1.3 0.49 1.7 0.12 0.33 0.44 1.7 
190 0.15 0.58 0.14 0.38 0.074 0.17 0.22 0.66 
500 0.0041 0.0091 0.0002 0.0005 0.0035 0 .0070 0 . 0 1 3  0.030 

~ [GeV] Imf L Imf~ Imf~ Imfff Imf3 z Imf~ Imf L Imf ff 

175 0.27 1.8 0.57 5.1 0.14 3.5 0.52 4.7 
190 0.16 0.88 0.17 1.1 0.089 1.8 0.25 1.7 
500 0.0083 0 . 0 3 5  0 .0005  0 .0020 0.0064 0 . 0 7 0  0 . 0 1 4  0.054 

xfi[GeV] Ref~ Ref~ Ref~ r e f ~  re f~  r e f ~  

175 0.26 1.7 0.13 0.65 0.22 1.8 
190 0.16 0.87 0.11 0.44 0.099 0.61 
500 0.014 0.061 0.015 0.049 0.0021 0.012 

, ~  [GeV] Imf4 L Imf~ Imf~ Imf6 R Imf L Imf7 R 

175 0.19 0.89 0.060 0.31 0.17 1.4 
190 0.13 0.46 0.053 0.22 0.075 0.49 
500 0.013 0.034 0.011 0.034 0.0015 0.009l 



Table 8a-d. Same as Table 6, but in the 
basis of left and right handed form factors. 
Integration errors are below 5% unless 
the absolute value of a matrix element is 
smaller than 0.5.10- 3, in which cases the 
absolute errors do not exceed 0.05.10- 3 

Ref~ Ref  R Re f2 L Ref  R Re f3 L Ref  R Ref~ Ref  R (a) 

5.5 0.17 --2.1 --0.14 --6.9 -0 .6  0.085 -0.01 Ref  L 
0.21 -0.11 -0.15 -0 .36  -0 .66  0.07 0.02 Ref  fi 

1.6 0.085 5.2 0.37 -0.03 -0.065 Re f2 L 
Ira f (  5.4 0.13 0.29 0.65 -0 .05 -0.03 Re f2 R 
I m f  R -0.045 0.12 27 1.5 0.085 -0 .53 Re f3 L 
Imf  L - 1.6 0.02 1.1 3.5 0.03 -0 .23 Ref  R 
Imf~  0.03 -0.03 -0.01 0.01 1.9 -0 .07 Ref~ 
Imf~ -4 .2  -0.01 3.4 -0 .02  18 0.13 Ref~  
Ilmf3 R 0.02 -0 .06 -0.01 0.02 0.005 0.03 
Imf~ 0.06 - 0.04 - 0.02 - 0.02 0 0.02 1.4 
Imf~  0.18 0 -0 .1  0 -0 .42  0 -0.03 

(b) 

0.02 

I m f ?  Imf~  Imf2 z Imf2 R Imf3 L Imf3 g Imf~ Imf~  

Re f4 L Re f4 g Re f6 r Re f6 R Re f7 L Ref~ (c) 

5..6 --0.02 2.4 -0 .92 0.23 --0.26 Re f4 L 
0.14 -0.21 0.06 0.055 -0.015 Re f4 g 

21 - 1.3 4.2 - 0.33 Re f6 L 
Imf4 r 10 0.87 -0 .56 0.19 Re f6 R 
Imf4 g -0 .06 0.47 7.3 -0 .19 Ref~ 
Imf6 L - 1.6 1.0 105 0.12 Ref7 s 
Imf6 g 1.1 0.57 0.46 3.9 
Im/7 L -0 .32 0.16 24 0.33 13 
Imf~  0.45 0.03 0.095 0.55 0.16 0.2 

(d) Imf4 L I m f :  Imf~ Ira f /  Imf7 L Imfff 
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Table 9aqt. The covariance matrices of 
(43) for the estimation of anomalous 
couplings with optimal observables at 
175 GeV. Diagonal elements are explicitly 
written as squares, so that one can dir- 
ectly read standard deviations A gl (70). 
Numerically, this matrix was obtained by 
inversion of the coefficient matrix c of Imf~ 
Table 8 and subsequent division by the Imffi  
number of events. Since some elements of 
c, especially in the submatrix of right Imf~ 
handed couplings, are quite small, the Imf2 R 
corresponding parts of the inverse are Ira f3 L 
rather affected by integration errors and Imf3 s 
should not be taken too literally. This Imf~ 
explains the negative value for the diag- Imffi  
onal element of Ira f3 R 

(b) 

Imf4 R 
Imf6 ~ 
Imf~ 
I m f  L 
I m f  R 

Ref~ Ref  g Ref~ Ref~ Ref3 L Ref  R Ref~ Refs R (a) 

(0.36) 2 0.19 0.17 0.5 0.002 -0.046 0.008 0.11 Ref~ 
(6.7) 2 -0 .43 136 0.11 - 17 2 -4 .2  Reffi 

(0.93) 2 - 2  -0 .12  0.29 -0.029 0.032 Ref~ 
(21) 2 0.372 - 5 9  7.1 - 1 7  Ref2 R 

(0.34) 2 (0.2) 2 - 0.045 0.006 0.086 Ref~ 
-0.21 (3.8) 2 (2.9) 2 -0 .96  2.6 Re f3 R 

0.17 -0.13 (0.99) 2 (0.54) 2 -0 .19 Ref~ 
0.059 33 0.083 (0.17) 2 (2) 2 Ref~  

-0.018 0.15 -0 .12  -0.009 (0.23) 2 
-0 .48 7 -0.11 65 0.26 - 2 0  
-0.015 0.93 0.023 -0.008 0.014 1.7 (0.51) 2 
-0 .63 5.8 0.81 -0 .32  0.65 12 0.93 (6.4) 2 

Imf~ L Imf~ R I m f  L Imf~  Imf#  Imf~  Imf~ Imf5 R 

Re f4 L Re f4 R Re f6 L Re f6 R Ref  L Ref~ (e) 

(0.27) 2 - 0.022 -- 0.005 0.064 0,007 0.054 Re f4 z 
(1.6) 2 0.028 -0 .38 -0.041 0.88 Re f4 R 

(0.14) 2 0.012 -0.01 0.012 Ref~ 
(0.19) 2 (0.84) 2 0.023 -0.91 Ref6 R 
0.009 (0.96) 2 (0.23) 2 0.031 Re f7 L 
0 --0.01 (0.075) 2 (2,1) 2 Re f7 R 
0 --0.18 0.001 (0.42) 2 
0.001 0.009 -0.01 0,001 (0.21) 2 

-0.083 0.35 0.003 --0.45 --0.038 (1.7) 2 

(d) Imf4 L Imf~ Imf6 L Imf6 R Imf  L Imf7 R 
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determination of single form factors are not improved by 
more than 5%, so that the theoretical gain presumably 
will be too small to compensate additional systematic 
errors. 

A remark should be made about the approximation 
made throughout our analysis to retain only the lowest 
order terms of an expansion in the anomalous parts of 
form factors. An indication of its validity may be taken 
from the exact expression for the total cross section. At 
LEP2 energies, both linear and quadratic coefficients in 
the expansion of ~ do- are not greater than 0.1 times the 
zeroth order value S dq~ So, so that, if the anomalous parts 
of the f~ are not much larger than their respective 6f~, the 
linear part may be neglected against S dqSSo and the quad- 
ratic part against the linear one. Some quadratic terms 
can however be comparable with those linear contribu- 
tions which have very small coefficients (which is the case 
for fs), so for consistency the latter should be neglected, 
too. At 500 GeV, linear and quadratic coefficients in f do- 
are partly larger than the standard model value by one or 
two orders of magnitude respectively, or even three orders 
in the case of quadratic coefficients off2. Still, our approx- 
imation would not be too bad if f2 was of the order of 
some parts in 10 -4 and the other form factors of some 
parts in 10 .2 . 

7 Conclusions 

In the present paper we have studied integrated observ- 
ables for the detection of anomalous gauge boson coup- 
lings in W pair production at e +e--colliders. 

As we have shown, in any reaction the most sensitive 
integrated observables which can be found contain all 

information about the coupling parameters that can be 
extracted experimentally, assuming that an expansion to 
lowest order in these parameters is sufficiently good. 

Compared with more simple observables for the 
measurement of anomalous three boson form factors, the 
optimal observables show a clear improvement in sensi- 
tivity. Furthermore, they present a systematic framework 
for the estimation of several parameters in the sense that 
for any coupling there is an observable with maximal 
sensitivity to it. 

Numerically we find that for most of the anomalous 
form factors values around 0.1 would have a statistically 
significant effect on these observables for lepton-dijet 
events at LEP2, assuming 500 pb-1 and x/~= 190 GeV. 
This is compatible with the results of [12] and [20], where 
various angular distributions and correlations were 
studied. Charge tagging for the jets would reduce the 
theoretical errors by a factor of about 1.5. On the other 
hand, optimal observables for purely leptonic events 
would lead to weaker bounds on the couplings. As is to be 
expected from the form of the anomalous amplitudes, the 
sensitivity is quite dependent on the c.m. energy. It gener- 
ally decreases by a factor of 2 when one goes to 175 GeV, 
whereas one would gain a factor of roughly 1.5 when 
running at 210 GeV. The correlations between form fac- 
tors J}~ and f z are generally strong and it should be 
advantageous to use the less correlated form factors fL, 

fR of (3), which appear in the amplitudes for left and right 
handed beam electrons. For unpolarised beams we find 
sensitivity only to the f z, whereas the f R are practically 
unmeasurable. Thus, one could restrict an analysis to the 
fL, reducing greatly the number of form factors to be 
determined. 

At NLC, the potential for studies of the three gauge 
boson vertices is considerably higher. We find that one 
can expect to measure f2 to a precision of a few 10 -4 
and all other form factors within some parts in 10 -2. 
Using longitudinally polarised e- and e + beams, the 
determination of the left handed combinations of form 
factors would be possible with the accuracy improved by 
a factor of 2, whereas the measurement of the right handed 
combinations should be difficult because of the very low 
statistics. 
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Appendix A. The generalised Rao-Cram6r-Fr6chet bound 

In this appendix we derive the generalised Rao-Cram6r- 
Fr6chet bound used in Sect. 4. 

Let F(x, gi) be the distribution function of a random 
variable x and ~i(x) a set of linearly independent es- 
timators for the gi with 

El?i] =g~. (71) 

Differentiating the normalisation condition 

S dx F(x, gi)= 1 (72) 

with respect to g~, one obtains 

~dx~--~iF=[dxFo-~ilnF=E[-~gilnFl=O. (73) 

Similarly, differentiation of (71) with respect to gj yields 

EF?~ ~ In FI=6 u. (74) 
L vgj 

For arbitrary vectors u~ and v~ one has 

0 

i,j gJ 

With (73) and (74) this reduces in marix notation to 

O <_ ur Vu + vr lv-2urv, (76) 
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where 

V u = Cov(~i, ~j) 

0 In F]. Iu= EI~-~ ln F -~g j (77) 

Being a covariance matrix of linearly independent quant- 
ities, V is positive in any basis and hence can be inverted. 
Sett ing n = V - 1  v, (76) becomes  

vr V-lv<_vr lv, (78) 

which implies tha t  the el l ipsoid v r V -  1 v = 1 fully conta ins  
the one given by  v r l v =  1. 
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