Potential for future e^+e^- colliders to measure the decay process: ${\cal H}\to\gamma\gamma$

Elliott Jones

Supervisors: Katharina Behr and Krisztian Peters

University of Birmingham

September 5, 2017

Theory

- Decay Processes Involved
- Important Detector Components

Simulation and Analysis

- Simulation
- Analysis

- CMS detector
- Detector Parameter Changes

- Historically prominent process in 2012 Higgs boson discovery.
- Important input for global fit of Higgs couplings.
 - Cornerstone of FCC physics programme.
- Rare process requires large amount of data.
 - Understanding of important detector components.
- Feasibility studies added to the FCC Conceptual Design Report (CDR)

Theory

- Decay Processes Involved
- Important Detector Components

2 Simulation and Analysis

- Simulation
- Analysis

- CMS detector
- Detector Parameter Changes

• Cross-section $\sigma = 200$ fb at leading order for s = 240 GeV.

Figure 1: Higgs production cross sections.

Higgs Decay: $H \rightarrow \gamma \gamma$

- $BR \approx 0.2\%$.
 - Only 2000 events in 5 ab^-1 at s = 240 GeV.

(a) Higgs decay to 2 photons via fermionic loop.

(b) Higgs decay to 2 photons via bosonic loop.

Figure 2: Decays of a Higgs boson to 2 photons.

Background Production: $e^+e^- \rightarrow Z\gamma$

• Cross-section $\sigma = 26.4$ pb at leading order at s = 240 GeV.

Figure 3: Production of Z and γ from e^+e^- collisions.

• Only events with ISR will pass event selection.

Theory

- Decay Processes Involved
- Important Detector Components

Simulation and Analysis

- Simulation
- Analysis

- CMS detector
- Detector Parameter Changes

- The Higgs mass is given by: $M_H = \sqrt{2E_1E_2(1 cos(\theta))}$.
 - Granularity improves θ measurement.
 - Resolution improves E_1 and E_2 measurements.
- Resolution = $\sqrt{(\frac{a}{E})^2 + (\frac{b}{\sqrt{E}})^2 + c^2}$ where a, b, c are noise, stochastic and constant terms respectively.
- $\bullet\,$ Tracking detector important for Z reconstruction $\to\,$ important for choosing a Higgs candidate.

Theory

- Decay Processes Involved
- Important Detector Components

2 Simulation and Analysis

- Simulation
- Analysis

- CMS detector
- Detector Parameter Changes

- Using PYTHIA8 to simulate events.
- Starting with 1k events for testing purposes.
- 40k events for final measurements.
- 1M background events.
 - 10M events desirable.
- Particles produced in PYTHIA8 passed through a parametrised detector simulation (PAPAS).
 - Github repository:

https://github.com/cbernet/heppy/tree/master/papas.

Theory

- Decay Processes Involved
- Important Detector Components

2 Simulation and Analysis

- Simulation
- Analysis

- CMS detector
- Detector Parameter Changes

Table 1: Cuts made to the events and their efficiencies.

Cut	Continuous	Individual	Marginal
> 2 photons	97%	97%	61%
Photon Energy	93%	96%	61%
Photon Isolation	86%	92%	64%
Photon Pseudo-rapidity	64%	71%	84%
Higgs angle	59%	97%	61%

- LEP3 study[1] achieved an efficiency of $\approx 85\%$ at the photon isolation cut stage.
- \bullet LEP3 study[1] achieved an efficiency of \approx 60% after all cuts.

- First produce a Higgs from all possible combinations of photon candidates in the event.
- Produce Z from all leftover particles in the event.
- Choose combination to minimise:

•
$$\chi^2 = |M_H - M_{H,nominal}| + |M_Z - M_{Z,nominal}|$$

Theory

- Decay Processes Involved
- Important Detector Components

2 Simulation and Analysis

- Simulation
- Analysis

- CMS detector
- Detector Parameter Changes

Signal + Background Histogram

• A Gaussian plus linear fit is made to the data.

Mass of reconstructed Higgs particles

Figure 4: Distribution of the Higgs mass in the H $\rightarrow \gamma\gamma$ channel.

The width of the Gaussian in this plot is 1.4606 \pm 0.0050 GeV

Elliott Jones (University of Birmingham) Potential for future e^+e^- colliders to measure

Pure signal

Elliott Jones (University of Birmingham) Potential for future e^+e^- colliders to measure

- Decay Processes Involved
- Important Detector Components

- Simulation
- Analysis

- CMS detector
- Detector Parameter Changes

Table 2: Detector parameters and their effect on the width of the Gaussian.

Width/GeV	Doubled	Halved
Cluster Size	$0.8327 {\pm} 0.0040$	$0.8249 {\pm} 0.0039$
All ECAL Resolution terms	$1.632{\pm}0.008$	$0.4331 {\pm} 0.0020$
All HCAL Resolution terms	$0.8288 {\pm} 0.0040$	$0.8277 {\pm} 0.0039$

Nominal value - 0.8267 ± 0.0039 GeV

Effect of ECAL resolution

(a) Histogram with largest Gaussian width.

Figure 6: Smallest and largest width measurements.

20 / 22

- With $5ab^{-1}$ of data, the width of the mass peak can be measured to be 1.4606 \pm 0.0050 GeV.
- The main detector component that will improve measurements of the $H\to\gamma\gamma$ channel is the ECAL resolution.
- Outlook
 - Using a larger number of events for the background would improve the predictions significantly.
 - The tracking detector and magnet would be interesting detector components to investigate in the future.

(Azzi et al., 2012)

Prospective Studies for LEP3 with the CMS Detector Submitted to the European Stategy Preparatory Group 18/10/2012