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Astropart. Physics @DESY Experiments

— HESS
* Gamma-ray — MAGIC

— VERITAS
— TAIGA
— CTA

— Fermi

* Neutrino _ lceCube
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High Impact of Astropart. Groups-
|CRC 2017 (Busan, South Korea)

cosmic-rays (Cosmic Labs N

Energy Information
Temporal Information
KAnguIar Information )

Y-rays Y

* Gamma-rays: Elisa Pueschel (Highlight talk)
* Neutrinos: Jakob van Santen (Highlight talk)

Markus Ackermann (Rapporteur talk)

* Theory: Andrew Taylor (Review talk)
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Subgroups Large Impact
ICRC 2017

Fermi 16 (21) 0 (0)
HESS 21 (36) 3(12)
MAGIC 13 (20) 0(7)
VERITAS 12 (20) 3 (4)
CTA 11 (32) 0(4)
TAIGA 4(7) 1(2)
IceCube 21 (58) 3 (6)
TOTAL 98 (194) 10 (35)

The bottom line from this table is that DESY punched well above its weight
at this year's ICRC....one can of course carry out a similar comparison

with other big Astroparticles phyiscs conferences such as TeVPA %
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Group Highlights- MAGIC

Energy Info.
Temporal Info. 0oL
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Group Highlights- VERITAS

Energy Info.
Temporal Info.

y-ray binary, long (31545 day) period 11 years of
observations = long term study of flux/spectral

variability

Long term observations key for understanding
electron acceleration in this source
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Group Highlights- HESS
Energy Info.

Temporal Info. i
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The Crab Nebula: the rotational energy drain

highly relativistic wind (I" ~ 10%)
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Crab Emission- Electron Cooling and Emission
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Particle Acceleration in Pulsar Wind Nebulae

Fraschet‘tl and Pohl (2017) MNRAS 471 4856

«‘047

nits

e Spectrum evolved:
source, energy loss, etc.

log(y* N(7)), log(y* Q(7)) in u

e Best fit with log-parabola
as source spectrum

e Deviation from power law

D

 Reflects details of
acceleration process

log(E?dN/dE [TeV em™ s




Simulations of Outflow from the Crab

.. o
Follow turbulence and acceleration SR :
over nine decades in scales: Turbulence eddi:. i, El

-85 0 | / %
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. 3D fluid-kinetic simulations &
a=380" | with realistic boundaries that 2
v resolve dissipation scales.

12 Rolf Buhler  PlasmaCrab ¢
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Crab Nebula Extension Revealed at y-ray Energies 2017
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Particle Acceleration and Magnetic Turbulence

Shock

plasma (e,p) plasma (e,p)
u, - u,=u,/x -
drift 2
cosmic rays (p) cosmic rays (p)
Uer =0

 Shifting of u,‘ to p,’ is caused by magnetic turbulence

 What drives strong magnetic turbulence?
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Particle Transport in Space
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A study of the fundamental plasma processes governing particle transport (and

acceleration) in astrophysical settings, the interaction with MHD turbulence,
reconnection, etc.

Jokipii suggested different scaling- updated understanding of MHD turbulence
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Electrons from Local PWN (Source)?
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Group Highlights- Fermi-LAT

Catalog for flaring gamma-ray sources and running real time monitor

https://fermi.gsfc.nasa.gov/ssc/data/access/lat/FAVA/

00¢ Non-blazar active galaxy Narrow line Seyfert 1 galaxy )» Pulsar/Pulsar wind nebula
Flat-spectrum radio quasar type blazar 4+ Radio galaxy . High-mass binary system

¢ BL Lac type blazars “ Gamma-ray burst m Unknown

) Blazar candidate of uncertain type YW Nova [l Unassociated

Abdollahi et al., ApJ 846 1, 2017
PhD thesis 2017 Matteo Giomi
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DESY news 30/08/2017

Flickering in the gamma skies
Analysis reveals dozens of unknown gamma-ray sources in the universe

Researchers at DESY have compiled an extensive catalogue of variable sources of cosmic gamma radiation.
For his doctoral thesis, Matteo Giomi, working at DESY in Zeuthen, analysed almost 7.5 years of observational
data from NASA's “Fermi” space telescope. Over that period, the “Large Area Telescope” (LAT) on board the
satellite registered a total of 4547 bursts of gamma radiation, known as flares. Thanks to improved analytical
methods, Giomi was able to assign these flares to 518 variable sources. The “Fermi All-Sky Variability Analysis™
(FAVA) also lists 77 unknown sources, whose identity has not yet been determined. The “Fermi” scientists are
ing their in The Joumal.

“The catalogue comprises a wide range of gamma-ray sources,”
explains Giomi. “Most of the sources in the catalogue are eruptions in
extremely distant, so-called active galactic nuclei, but we are also
seeing binary star systems involving white dwarfs and black holes,
neutron stars and other remnants of stellar explosions.” In all cases,
the recorded gamma rays are produced by subatomic particles, which
are accelerated to extremely high energies by a range of mechanisms.
The catalogue will make it easier for astroparticle physicists to figure
Douinload [161KB, 1115 x 570] out precisely how the different cosmic particle accelerators work.
The gamma-ray sky as seen by ‘Fermi. Each
Spot represents a locaised gamma-ray flare. “We are looking at the particles while they are in the process of being
Credit: Fermi All-Sky Variabilty Analysis accelerated, so to speak,” says DESY's Rolf Bilhler, who supervised
the thesis. “In steadily radiating galaxies, the acceleration can take thousands of years. In the variable sources,
by contrast, the acceleration must be taking place on roughly the same timescale as the flare. This gives us
some clues about the acceleration process. For example, an accelerator cannot be larger than the distance
travelled by light over the duration of the flare.”

The analysis pays special attention to the 77 as yet unidentified sources. “In most cases, these will probably be
active galactic nuclei as well, but they could also include representatives of entirely new classes of gamma-ray
sources, which we have not come across before,” says Bilhler, who compiled an earlier catalogue of variable
gamma-ray sources with some of his colleagues, based on just under four years of “Fermi” observations and
listing 215 sources. To facilitate access to the two catalogues, as well as the latest data from “Fermi”, Daniel
Kocevski of NASA's Goddard Space Flight Center has written a web interface, through which research scientists
can retrieve the latest observational data on variable sources: https://fermi.gsfc.nasa

lat/FAVA/

Reference:
The second catalog of flaring gamma-ray sources from the Fermi All-sky Variability Analysis; S. Abdollahi et al.;
The Astrophysical Jounal, 2017; DOI: 10.3847/1538-4357/aa8092




Group Highlights- IceCube

_ IceCubé work in pr@gress (A::r:::)hz:l;tarlnigu:::ﬂc) IceCube collaboration, TeVPA 2017
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Which Cosmic Laboratory is Being Probed?

[ Energy Info. ]

HESE 4yr with Egep > 100 TeV (green) / Classwal Vu + vy 6yr with £, > 200 TeV (red)

180° -180°

Galactic
event appears in both samples

® 16 “cascade events” (circles) and 3 “tracks events” (diamonds) with Eg., 2> 100 TeV
® 28(+1) up-going muon neutrino events with E,, = 200 TeV [lceCube’15]

X no significant spatial or temporal correlation of events 19




Neutrino Production in Astrophysical Sources

Multiple pion production channels:
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Search for Neutrinos from SNe Explosions

Gamma-Ray & 4 Supernova
Burst (GRB)

| Supernova
" f Y&V with chocked Y 9"  TypelIn
by jets . 4
1
1

\
\

A
]
' A
\ 1

progenitor

Neutron
Star

4

e Stacking analysis to probe origin of cosmic neutrinos from
chocked-jet supernovae and SNe expoding into a massive
circumstellar medium (SN IIn).

» Different time correlations / expected neutrino light curves tested.
* No correlation found stacking several hundred SNe.

* Bright SNe tested separately.
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Are bright AGN the Sources of the PeV Neutrinos?

Brightness level makes it a valid candidate

Kadler et al. (2016) Nature Physics, 12, 807/
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GRBs as Source Candidates

Boncioli et al., ICRC 2017
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What is the maximum energy this source can reach? ....are Iogm(E/GeV)
relativistic shocks efficient accelerators?

For non-relativistic shocks: Epmax = Bshe€BRsource

For relativistic shocks the situation looks attractive, recalling that: E, = E{ (1 T 5#1 )
1+ Oz

shock
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Group Highlights- CTA
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Group Highlights- TAIGA

ey A 10s TeV PeV Instrument
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* Next goal is the detection of the
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angle observations)
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Exciting Recent Developments

First Gravitational Wave Event with an Electromagnetic Counterpart
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...and other interesting multi-messenger observational
developments are currently in pipeline!
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* The field is now rich in the range of high energy astrophysical objects detected,
thanks to the diverse range of energies (and messengers) covered

* Asubset of these astrophysical objects demonstrate a wide variety of phenomena
(ie. Operating as “Cosmic Labs”), allowing full exploitation of the information
provided by their messenger particles

* A growing level of interconnectedness is starting to be revealed between these
results, as these fields mature and the “discovery dust” settles

e Qurtheoretical understanding of these systems, in some cases, is starting to also
mature

* Exciting new results appear to be revealing that a class of objects recently
discovered connect gamma-ray emitters to NS-NS Gravitational wave sources
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