

H→TT at CMS Alexei Raspereza

SFB B9 Meeting, 2017/10/16

Analysed Dataset and Decay Modes

 $e\mu$

 $\mu \tau_h$

 $e\tau_h$

 $\tau_h \tau_h$

other

0.1

0.2

0.3

0.4

 $\mathcal{B}(\tau\tau)$

0.5

• Dataset :

35.9 fb⁻¹ collected by CMS at c-o-m energy of 13 TeV

 four decay modes of tau pairs exploited (94% of final states)

 $e\mu$, $\mu\tau_h$, $e\tau_h$, $\tau_h\tau_h$

 Final states with hadronically decaying tau leptons amount to 88% of all di-tau decays

- efficient triggering and identification of τ_h in harsh pileup environment is essential

τ, Identification at CMS

- seeded by anti- k_{T} jets ($\Delta R_{cone} = 0.4$)
- use as input particle-flow objects
- combine charged hadrons and strips of ECal clusters (photons, electrons)
- identify three main decay modes
- 1-prong+pi0s and 3-prong decays : require compatibility of visible tau mass with intermediate resonance (ρ, a1)

1 prong	1 prong + pi0s	3 prong
12%	26% (1 pi0), via ρ 11% (2 pi0s), via a ₁	10%, via a ₁ (+5% with pi0)

τ. Identification at CMS

τ_h Identification at CMS

- Run 1 approach : cut on isolation variables
- Run 2 approach : MVA discrimination of τ_h against hadronic jets
 - isolation variables (p_T sums)

calorimeter cluster shapes

٠

- τ_h decay length information (track impact parameters, SV decay length)
- multiplicity of particle-flow objects in signal/isolation cones

- significant improvement compared to Run 1 approach
- τ_h efficiency of $\simeq 45\%$ for mis-ID probability of $\simeq 2 \cdot 10^{-3}$

Spin-off : Tau Polarization in Z $\rightarrow \tau \tau$ Decays

Particle flow approach facilitates measurement of tau polarization

Exploited decay channel

 $\tau^{\pm} \rightarrow \rho^{\pm} \nu_{\tau} \rightarrow (\pi^{\pm} \pi^{0}) \nu_{\tau}$ energy asymmetry between π^{\pm} and π^{0} is spin sensitive variable

measurement with $Z \rightarrow \tau_{\mu} \tau_{\rho}$ sample

- fit to observed data with superposition of signal and background templates
- Z → ττ contribution is represented by right- and left-handed components

$$P_{\tau} = -36.6 \pm 3.7~\%$$

Measurement of τ_h ID efficiency

- exploits $Z \rightarrow \tau_{\mu} \tau_{h}$ standard candle
- based on likelihood fit of $\mu \tau_h$ invariant mass in "pass" and "fail" categories
- derived data/simulation SF are applied to simulated samples with genuine taus
- typical SF = 0.95 ± 0.05 (including tracking efficiency)

Measurement of τ_h momentum scale

- exploits $Z \rightarrow \tau_{\mu} \tau_{h}$ standard candle
- Individual measurement in each decay mode

 $\tau^{\pm} \rightarrow \pi^{\pm} + \pi^{0} s$ and $\tau^{\pm} \rightarrow \pi^{\pm} \pi^{\pm} \pi^{\mp}$

→ fit invariant mass of visible tau decay products

Likelihood scan using continuously shifted templates

Measurement of τ_{h} momentum scale

 $\tau^{\pm} \rightarrow \pi^{\pm}$: fit $\mu \tau_h$ mass (m_{vis}) in Z $\rightarrow \tau_{\mu} \tau_h$ decay

+ for other decay modes, measurements using $m_{\mbox{\tiny vis}}$ and $m_{\mbox{\tiny \tau}}$ give consistent results

decay mode	$ au_{ m h}{ m momentumscale}$
1-prong	$-1.8 \pm 1.5\%$
1-prong+ $\pi^{0'}$ s	$+1.0 \pm 1.3\%$
3-prong	$+0.4 \pm 1.2\%$

Suppression of lepton $\rightarrow \tau_{h}$ fake rate

- $Z \rightarrow ee/\mu\mu$ background with $e/\mu \rightarrow \tau_h$ fakes is large lepton+ τ channels
- Dedicated anti-lepton discriminators are developed
 - anti-electron : using tracking information and calorimeter cluster shapes

anti-muon : based on track hit pattern in tracking system and muon stations ($\mu \rightarrow \tau_h$ fake rate ~ 10⁻⁴ for efficiency of 90%)

 $e/\mu \rightarrow \tau_h$ rates and energy scales are measured in Z $\rightarrow ee/\mu\mu$ samples

٠

Di-tau Mass Reconstruction

- Fully reconstructed di-tau mass is key variable discriminating signal against dominant Z $\rightarrow \tau \tau$ background
- Reconstruction of $m_{ au au}$ with dynamic likelihood algorithm
- Inputs : $ec{p}_{ au_1}, \ ec{p}_{ au_2}, \ ec{p}_{ ext{mis}}, \ ext{cov}(ec{p}_{ ext{mis}})$
- Estimate of $m_{ au au}$ is obtained by maximizing likelihood combining
 - matrix elements of tau decays
 - \cdot χ^2 of $ec{p}_{
 m mis}$ measurement

- Better separation of H $\rightarrow \tau\tau$ signal and Z $\rightarrow \tau\tau$ background compared to the invariant mass of visible $\tau\tau$ decay products
- the peak position is shifted to the nominal value of resonance mass
- mass resolution : 15-20%

Event categorization

Major production mechanisms are targeted with specific event categories

largest signal yield but also largest bkgd

•

calibration of tau reconstruction with Z → ττ standard candle

constrain uncertainties related to instrumental noise

<u>boosted</u> : high p_τ(H) (not in 0jet or VBF)

- Small signal yield
- but highest S/B ratio

- enhanced S/B compared to 0-jet category
- improved di-tau mass resolution

Overview of search channels : τ_{h}

- largest branching fraction of 42%
- Triggering is major a challenge
 - Improvements in L1 and HLT
 - higher readout granularity
 - sophisticated ID using dynamic clustering at hardware level
 - → same p_{τ} thresholds as in Run1 but sharper turn-on and higher efficiency

Channel	Trigger requirement	Lepton selection		
		$p_{\rm T}$ (GeV)	η	Isolation
$\tau_{\rm h} \tau_{\rm h}$	$\tau_{\rm h}(35)\&\tau_{\rm h}(35)$	$p_{\rm T}^{\tau_{\rm h}} > 50 \& 40$	$ \eta^{ au_{ m h}} < 2.1$	MVA $ au_{ m h}$ II

• Main backgrounds

٠

- Irreducible $Z \rightarrow \tau \tau$
- → estimated with simulation with data-driven corrections (kinematics of Z and accompanying jets) derived from Z → $\mu\mu$ control region
- QCD multijet background (suppressed by tight tau ID)
 - → measured exclusively from data (extrapolation from sideband with loose tau ID)

offline τ p_ [GeV]

Overview of search channels : $\mu + \tau_h$ and $e + \tau_h$

lower branching fractions (23% +23%) but cleaner signature

single-lepton triggers with higher p_{τ} thresholds compared to Run1

 $\mu + \tau_{h}$ channel : combination of single-muon and muon+tau cross trigger \rightarrow increase in acceptance

Final state	Trigger requirement	Lepton selection		
		p_T (GeV)	η	Isolation
$\mu \tau_{\rm h}$	$\mu(22)$	$p_{\rm T}^{\mu} > 23$	$ \eta^{\mu} < 2.1$	$I^{\mu} < 0.15$
		$p_{\mathrm{T}}^{ au_{\mathrm{h}}} > 30$	$ \eta^{ au_{ m h}} < 2.3$	MVA τ_h ID
	$\mu(19) \& \tau_{\rm h}(21)$	$20 < p_{ m T}^{\mu} < 23$	$ \eta^{\mu} < 2.1$	$I^{\mu} < 0.15$
		$p_{\mathrm{T}}^{ au_{\mathrm{h}}} > 30$	$ \eta^{ au_{ m h}} < 2.3$	MVA τ_h ID
$e\tau_h$	e(25)	$p_{\rm T}^{\rm e} > 26$	$ \eta^{\rm e} < 2.1$	$I^{\rm e} < 0.1$
		$p_{\mathrm{T}}^{ au_{\mathrm{h}}} > 30$	$ \eta^{ au_{ m h}} < 2.3$	MVA $\tau_{\rm h}$ ID

Major backgrounds :

٠

٠

٠

- Irreducible Z → ττ (estimated as in τ_hτ_h channel)
- W+Jets with jet $\rightarrow \tau_h$ fakes
 - suppressed by $\textbf{m}_{\scriptscriptstyle T}$ cut
 - estimated from high m_{τ} sideband
- QCD multijets (estimated from sideband regions with same sign lepton pairs and relaxed lepton ID)
 - $Z \rightarrow ee/\mu\mu$ with $e/\mu \rightarrow \tau_h$ fakes (estimated from simulation corrected for $e/\mu \rightarrow \tau_h$ misidentification rates measured in data)

Overview of search channels : e+µ

Cleanest signature but small branching fraction (6%) \rightarrow lowest sensitivity inter-calibration of Drell-Yan background w/o τ_h

e+ μ cross triggers with asymmetric thresholds are used \rightarrow high signal acceptance

Channel	Trigger requirement	Lepton selection		
		$p_{\rm T}$ (GeV)	η	Isolation
еμ	e(12) & µ(23)	$p_{\rm T}^{\rm e} > 13$	$ \eta e < 2.5$	$I^{\rm e} < 0.15$
		$p_{\rm T}^{\rm p} > 24$	$ \eta \mu < 2.4$	$I^{r} < 0.2$
	$e(23) \& \mu(8)$	$p_{ ext{T}}^{ ext{c}} > 24 \ p_{ ext{T}}^{\mu} > 15$	$ert \eta \mathrm{e} ert < 2.5 \ ert \eta \mu ert < 2.4 ight.$	$I^{ m e} < 0.15$ $I^{\mu} < 0.2$

- Major backgrounds :
 - Irreducible Z \rightarrow ττ (estimated as in other channels)
 - top-pairs

٠

٠

٠

- suppressed by b-tag veto and requiring alignment of missing $p_{\rm T}$ with visible decay tau products (e, μ)
- estimated from simulation corrected for top pT distribution
- constrained in the sideband region
- **QCD** multijets (estimated from sideband regions with same sign lepton pairs and relaxed lepton isolation)

Signal Extraction

Signal is extracted by simultaneous maximum-likelihood fit in 12 signal channels

4 final states (eµ , $e\tau_h \mu \tau_h$, $\tau_h \tau_h$) x 3 event category (0-jet, VBF, Boosted)

and 12 control regions, constraining W+Jets, QCD and ttbar backgrounds

In all channels but one fit is performed with 2D distributions

	0-jet	VBF	Boosted
Selection			
$\tau_{\rm h} \tau_{\rm h}$	No jet	\geq 2 jets, $p_{\rm T}^{ au au}$ > 100 GeV, $\Delta\eta_{\rm jj}$ > 2.5	Others
$\mu \tau_{ m h}$	No jet	\geq 2 jets, m_{jj} > 300 GeV, $p_{T}^{\tau\tau}$ > 50 GeV, $p_{T}^{\tau_{h}}$ > 40 GeV	Others
$e \tau_h$	No jet	≥ 2 jets, $m_{jj} > 300$ GeV, $p_T^{\tau\tau} > 50$ GeV	Others
eμ	No jet	2 jets, $m_{\rm jj} > 300 {\rm GeV}$	Others
Observables used in fit			
$\tau_{\rm h} \tau_{\rm h}$	$m_{\tau\tau}$	$m_{\rm jj}$, $m_{ au au}$	$p_{\mathrm{T}}^{ au au}$, $m_{ au au}$
$\mu au_{ m h}$	$\tau_{\rm h}$ decay mode, $m_{ m vis}$	$m_{\rm jj},m_{ au au}$	$p_{\mathrm{T}}^{ au au}$, $m_{ au au}$
$\mathrm{e} au_\mathrm{h}$	$ au_{ m h}$ decay mode, $m_{ m vis}$	$m_{ m jj}, m_{ au au}$	$p_{\mathrm{T}}^{ au au}$, $m_{ au au}$
eμ	p_{T}^{μ} , m_{vis}	$m_{\rm jj}, m_{ au au}$	$p_{\mathrm{T}}^{ au au}$, $m_{ au au}$

- Di-tau mass or visible mass is used as 1st observable in 2D fit
- Choice of 2nd observable is motivated by
 - production signatures probed in a given category (boosted, VBF)
 - calibration of backgrounds specific to a given decay channel (0-jet)

2D Distributions

Postfit final discriminants : τ_hτ_h channel

- 1D m_{π} distribution used to extract signal in 0-jet category
- No gain by adding second variable

- Moderate excess above background prediction at $m_{_{\rm T}} \sim 125~GeV$

Postfit final discriminants : $\tau_h \tau_h$ channel

- Unrolled 2D distributions in Boosted and VBF categories
- Boosted category $(m_{ au au}, p_T^{ au au})$

 $(m_{\tau\tau}, m_{jj})$

excellent S/B at high m_{jj} (most sensitive channel)

• Signal clearly developing in bins with high S/B ratio

Postfit final discriminants : $l + \tau_h$ channels

• the 2D distribution (m_{vis} vs. τ_h decay mode) used to extract signal in 0-jet category

 \rightarrow better separation between signal and Z \rightarrow ee/µµ background

- Low sensitivity to signal
- But category facilitates calibration of Drell-Yan background and constrains instrumental uncertainties
 - $\rightarrow \tau_{h}$ ID efficiency and momentum scale

 $\rightarrow e/\mu \rightarrow \tau_{_h}$ fake rate and momentum scale

Postfit final discriminants : $l + \tau_h$ channels

VBF : $(m_{\tau\tau}, m_{jj})$

Unrolled 2D distributions

Boosted : $(m_{\tau\tau}, p_T^{\tau\tau})$

Postfit final discriminants : e+µ channel

Unrolled 2D distributions

Boosted : $(m_{\tau\tau}, p_T^{\tau\tau})$

VBF : $(m_{\tau\tau}, m_{jj})$

e+µ channel has lowest sensitivity

- smallest yield
- poorer mass resolution

Nonetheless, non-negligible contribution to overall sensitivity

Uncertainty model

- Refined uncertainty model •
 - split jet energy uncertainties into 27 various sources
 - fine-grane instrumental uncertainties • (τ_{h} Id, momentum scale, fake rate)
- Background yields and shape ٠ constrained in a dedicated control regions
- instrumental corrections constrained ٠ in 0-jet category and propagated to VBF and Boosted categories
- Most of uncertainties are ٠ constrained in global fit
- Largest impact on precision comes ٠ from
 - \rightarrow instrumental uncertainties
 - \rightarrow theoretical shape uncertainties
 - \rightarrow limited MC statistics

Source of uncertainty	Prefit	Postfit (%)
$ au_{\rm h}$ energy scale	1.2% in energy scale	0.2–0.3
e energy scale	1-2.5% in energy scale	0.2-0.5
e misidentified as $\tau_{\rm h}$ energy scale	3% in energy scale	0.6 - 0.8
μ misidentified as $\tau_{\rm h}$ energy scale	Dependent upon <i>u</i> and <i>u</i>	0.5-1.0
$\vec{p}_{\rm T}^{\rm miss}$ energy scale	Dependent upon $p_{\rm T}$ and η	_
$\tau_{\rm h}$ ID & isolation	5% per $\tau_{\rm h}$	3.5
$ au_{ m h}$ trigger	5% per $\tau_{\rm h}$	3
$\tau_{\rm h}$ reconstruction per decay mode	3% migration between decay modes	2
e ID & isolation & trigger	2%	
μ ID & isolation & trigger	2%	
e misidentified as τ_h rate	12% 25%	20
μ misidentified as τ_h rate	20% per 100 CeV τ_{-} n_{π}	5-0 15
jet misidentined as t _h rate	20% per 100 GeV t_h pT	15
$ m Z ightarrow au au / \ell \ell$ estimation	Normalization: 7–15%	3–15
	Uncertainty in $m_{\ell\ell/\tau\tau}$, $p_T(\ell\ell/\tau\tau)$, and m_{jj} corrections	
W + jets estimation	Normalization (e μ , $\tau_{\rm h}\tau_{\rm h}$): 4–20%	
,	Unc. from CR ($e\tau_{\rm h}, \mu\tau_{\rm h}$): $\simeq 5-15$	
	Extrap. from high- $m_T CR$ ($e\tau_h$, $\mu\tau_h$): 5–10%	
OCD multijet estimation	Normalization (eu): $10-20\%$	5–20%
\sim	Unc. from CR ($e\tau_{\rm h}$, $\tau_{\rm h}\tau_{\rm h}$, $\mu\tau_{\rm h}$): $\simeq 5-15\%$	_
	Extrap. from anti-iso. CR ($e\tau_{\rm h}, \mu\tau_{\rm h}$): 20%	7-10
	Extrap. from anti-iso. CR $(\tau_h \tau_h)$: 3–15%	3–10
Diboson normalization	5%	—
Single top quark normalization	5%	
tt estimation	Normalization from CR: ${\simeq}5\%$	
	Uncertainty on top quark $p_{\rm T}$ reweighting	_
Integrated luminosity	2.5%	
b-tagged jet rejection (e μ)	3.5-5.0%	
Limited number of events	Statistical uncertainty in individual bins	
Signal theoretical uncertainty	Up to 20%	

Observation of H \rightarrow **tt Decays**

- Distribution of event yield in the analysis bins ordered by S/(S+B)
- clearly visible excess in data w.r.t.
 background-only expectation

- obs. (exp.) significance at $m_{\mu} = 125 \text{ GeV}$
- $4.9\sigma~(4.7\sigma)$ with Run II data only
- Combination with Run I CMS data yields $5.9\sigma~~(5.9\sigma)$
- first observation of Yukawa coupling in single fermionic decay channel at CMS

Visualization of signal : m_{π} distribution

- Events are weighted by S/(S+B) in bins of second variable of 2D distributions → unbiased mass spectrum
- Signal is clearly visible in the distribution of physical observable m₁

Measurement of the signal strength

- Measurements are consistent across channels
- Highest sensitivity comes from
 - decay side : $\tau_{_{h}}\tau_{_{h}}$
 - production side : VBF

Measurement of couplings

• probing universal coupling modifiers

35.9 fb⁻¹ (13 TeV)

- Contribution from H → WW (significant in eµ channel, sub-dominant in other channels) is treated as signal
- Measurement of couplings is compatible with SM expectation

Summary

- H(125) decays to τ-leptons are studied at CMS using Run II data
- H(125) $\rightarrow \tau\tau$ decay is observed with statistical significance of ~5.9 σ combining data collected at 7, 8 and 13 TeV
 - first observation of Yukawa coupling in a single experiment and single decay channel
- measured H(125) properties in the H $\rightarrow \tau\tau$ decay channel are consistent at current precision level with SM expectations
- Paper is submitted to PLB and made available in hep archive arXiv:1708.00373 [hep-ex]
- larger dataset is expected by end of 2017
 - → better measurement precision
 - → new measurements possible, e.g. probing CP properties