

Phase 2 Readyness for Tracking at HLT

2017 Face 2 Face Tracking Meeting Mainz

Thomas Hauth | September 19, 2017

ETP - KI

```
* What is more important can be controlled by the flag acceptOverridesReject, which is off by default (so reject in the module is more important than accept by default).

* more important than accept by default).

* more important than accept by default).

* class SoftwareTriggerModule: public Module {
public:

/// Create a new module instance and set the parameters.

SoftwareTriggerModule();

/// Initialize/Require the DB object pointers and any needed store arrays.

void initialize() override;

/// Run over all cuts and check them. If one of the cuts yields true, give a positive return value of the module:

void event() override;

/// Check if the cut representations in the database have changed and download newer ones if needed.

void beginRun() override;

/// Store and delete the ttree if it was created.
```

Software Trigger Processing Chain

single basf2 process

Preparation of Online Reconstruction

Fast Reconstruction

- As CDC and ECL algorithms are reused from the offline code, no special adaptations are required (and successfully used in Phase 2)
- The CDC track finding code uses MVA methods for background rejection which should be retrained with first measured background events

Full Reconstruction

- Alignment and calibration constants are loaded from the database
- Ensure the correct global tag is used and each sub-detector reconstruction will load the correct content
- Prepare a fixed software version (monthly build or specific release) used throughout data taking in phase 2 to ensure reproducibility of the trigger decision

Both reconstruction stages need to be tested and validated on the Phase II geometry.

VXDTF 2 Integration

- The rewritten track finder for the VXD (named VXDTF 2) is now available in the release
- Online ROI for PXD relies on the SVD tracks found via the VXDTF 2 on the HLT machines
- It has a superior performance and will replace the old VXDTF 1 in the near future
- VXDTF 2 needs to be integrated into the online reconstruction chain
 - First tests show runtime btw. VXDTF 1 and 2 close, but might be different for the relevant channels in the online use-case
 - Memory consumption of VXDTF 2 needs to be understood to be a "good citizen" on the HLT nodes

Open Questions:

- Which sector map will be used (has implications also on memory consumption)?
- Is a training of a sector map for the phase 2 geometry available (even if not the final one)?

Region-of-Interest Finder

- Important software component to decide (based on SVD tracks) which part of the PXD sensor is read out
- Implemented by the PXDDataReductionModule and extensively tested at DESY testbeams in the past
- Runtime of this module was optimized by Giulia Casarosa and is now runtime below 25ms

Open Questions:

- Will we always read-out all PXD hits?
- Do we need ROI generation of tracks with hits in the PXD but not (or too few) in the SVD?

https://kds.kek.jp/indico/event/24276/session/2/contribution/56/material/

Phase II Detector and Track Intercepts

Relevant Software Trigger Channels

	Cross Section (nb)	Background
BB	1.1000	False
BB charged	0.5643	False
BB mixed	0.5357	False
$ extbf{\textit{B}} ightarrow extbf{\textit{J}}/\psi extbf{\textit{K}}_{ extsf{\textit{s}}}$ ее		False
${\it B} ightarrow u u$		False
$B o\pi_0\pi_0$		False
${\it B} ightarrow ho_0 \gamma$		False
Continuum (ss̄)	0.3800	False
Continuum (dd̄)	0.4000	False
Continuum ($c\bar{c}$)	1.3000	False
Continuum (uū)	1.6100	False

....

Relevant Software Trigger Channels

	Cross Section (nb)	Background
ee ightarrow ee (Bhabha)	74.4000	(False)
ee o eeee	39.7000	True
$ee o ee\mu\mu$	18.9000	True
$ee ightarrow \gamma \gamma$	3.3000	False
$oldsymbol{ee} ightarrow \mu \mu$	1.0730	False
$m{ee} ightarrow \pi\pi$		False
$m{ee} ightarrow au au$	0.9000	False
au ightarrow 1 prong 1 prong		False
$ au o { extbf{e}}\gamma$		False

The numbers are taken from 'Overview of the Belle II Physics Generators' by P. Urquijo and T. Ferber.

FastReco

Idea: Run the the ECL reconstruction and the Legendre-based CDC track finding first

- Only around 10% of the runtime of the full reconstruction chain
- Produces ECL clusters and tracks, which can be used to reject the most copious background sources, esp. Bhabha radiation

The following variables are used for cuts after the FastReco

- energy sum of high energetic ECL (> 0.05GeV)
- highest 2 ECL cluster energies summend, highest 3 ECL cluster energy summed
- max p_t in event
- mean(abs(z))
- \blacksquare mean(θ)