

Valerio Bertacchi

Università di Pisa & INFN Pisa Face To Face Tracking Meeting 18 Semptember 2017

Strategy of the selection - reminder

- Idea: remove from training sample tracks which have strong interaction with material (multiple scattering) because:
 - They increse Sector Map complexity
 - They increse CPU time
 - They allow the selection of pattern mostly rejected in fitting phase
 - They increase the fake rate of VXDTF2

How to idetify these tracks?

- Track parameters should be constant along the track
- Strong variation of a Track parameter in a single layer crossing is a signature of a strong interaction $\longrightarrow \Delta X$ used as a rejection tag (X=track parameter)

Implementation

- definition of cuts from simulated ΔX distributions, in function of momentum, polar angle, and specific layer crossing (beam pipe, layer 1-6).
- NB: amplitude defined on single-cut efficiency a priori requirement (set by hand)
- Filter during TrainingSamplePreparation: a track it is selected only if each segment (pair of consecutive hit) has $-\Delta X_{cut} < \Delta X < \Delta X_{cut}$ for each track parameter 2

Effects on training sample - efficiency $\varepsilon(p) = \frac{N_{\text{track pass}}(p)}{N_{\text{track tot}}(p)}$

Effects on training sample - momentum

Range:

- Global cuts are momentumindependent
- Specific cuts are applied under 2 GeV/c

Slope higher than intrinsic distribution

Effects on the Sector Map

(same original sample, 0.9M Y(4S) events)

- **Dimension** of the sector map:
 - Fast Reco (SVD-Only): 12.3 MB (default), 5.1 MB (selected)
 - Full Reco (VXD): 21.0 MB (default), 8.3 MB (selected)

60% ligther with 15% tracks removed only!

- Complexity: More studied needed to quantify the complexity reduction in term of connections of the Sector Map
- **Loops:** unfortunately still presents...

Effects on tacking performances

- Test VXDTF2 with:
 - Default Maps (SVD-only and VXD)
 - Selected Maps aka NoKick Cuts Maps (SVD-only and VXD)
 - Maps from 10-muons events (SVD-only and VXD) produced by KIT group
- Analyzed VS momentum and polar angle:
 - Pattern recognition efficiency
 - Fitting Efficiency
 - (total efficieny= P.R.+Fit)
 - Fake Rate
 - CPU time

Pattern Reco. Efficiency - pt

- VS Default: degradation (up 10%) under 500 MeV/c
- VS Default: increase (up to 2-3%) over 800 MeV/c (C.A.?)
- VS Muon: quite same except very low p

Adding PXD: degradation reduced

Pattern Reco. Efficenty – very low pt

• VS Muon: quite the same of default

• Adding PXD: degradation reduced

Pattern Reco. Efficiency - theta

VS Default: High angle strong degradation

VS Muon: reduced degradation (0 to 5%)

NB: not plotted high angles

with muon)

Adding PXD: high efficiency range extended

Fitting efficiency - pt

- **VS Default:** increased eff. in all the range, up to 4% at low pt
- VS Muon: slightly decreased eff. In low p (under 1%)

- Adding PXD: increaded eff. In all the range (up to 1% except very low pt)
- Adding PXD: muon and default have same eff.

Fitting efficiency of VXDTF2 (SVD) VS 0

More evident the previous described behaviour:

- VS Default: NoKick is more efficient (1-3%)
- VS Muon: Nokick is less efficient (1%)

 Adding PXD: Nokick more efficient up to 1% with respet both maps, in particular at high angle Total Tracking efficiency of VXDTF2 (SVD) VS p,

- Increased fitting eff. doesn't compensate completely the degradation of P.R. eff.
- Residual degradation up to 10% with respect to Default map (muon and NoKick have the same total eff.)

Total Tracking efficiency – very low pt

- Strong degradation under 100 MeV/c
- Adding PXD: degradation reduced

Total Tracking efficiency - theta

- VS Default: degradation up to 10% at high angles
- VS Muon: similar result

Adding PXD: Halved degradation with both maps Adding PXD: At low angles small increase in efficiency (1-3%)

Fake rate - pt

- **VS Default:** fake rate halved at low momentum and reduced in all the range
- VS Muon: fake rate halved under 50 MeV/c and quite the same over 50 MeV/c

 Adding PXD: increased fake rate for all the maps, thus same situation of SVD-only

Fake rate - theta

- **VS Default:** fake rate reduced in all the range about 40-80%
- **VS Muon:** the same at low angle, reduced of 40%-60% at high angle

- Adding PXD, VS Default: quite as SVD-only
- Adding PXD, VS Muon: reduced at low angle too (20%)

Effects on tacking - CPU Time

Default Map

- 10.6 ms/ev (Fast)
- 32.3 ms/ev (Full)
- VXDTF1: 3.6 (Fast)9.3 (Full) ms/ev
- 20-40 % Overlap Rem, 50-30% SegNetProd, 15% C.A.

Muon Map

- 3.2 ms/ev (Fast)
- 12.4 ms/ev (Full)
- 9-20% Overlap Rem, 50% SegNecProd, 5-10% C.A

NoKick Map

- 4.5 ms/ev (Fast)
- 9.58 ms/ev (Full)
- 16-20 % Overlap Rem,. 60-45% SegNetProd, 9-8% C.A

- NoKick Map gives the best result in Full Reco
- Muon Map gives the best result in Fast reco
- Both reduce of a factor 3 the CPU time
- Gain mainly in Overlap Remover and SegNetProd

Summary

- Cuts works as expected on the training sample
- Cuts are not able to remove all the loops inside the SecMap, they have a different physical source
- With the NoKick maps the fake rate is halved, with 3-10% degradation in efficiency.
- The CPU time is reduced of factor 3
- The Muon map has similar result, slighty higher efficiency but higher fake rate
- The PXD strongly increase the performances in NoKick case

Next steps

- NoKick Cuts are not optimized large rooms of improvement:
 - Define the single-cut efficiency requirement from a figure of merit (from final performances in term of Efficiency, Fake Rate, CPU time)
 - Probably long work
- Identified a way (from Martin Ritter software advice) to increase the performance of the cuts, maybe removing the global cuts
 - Currently cuts and validation under production (NoKick_upgrade)
 - Results in few days

Track Parameters

$$\omega \to \frac{B_3 q}{\sqrt{P_1^2 + P_2^2}} \tag{1}$$

$$\tan \lambda \rightarrow \frac{P_3}{\sqrt{P_1^2 + P_2^2}} \qquad (2)$$

$$d_0 \to \text{sgn}(B_3 q) \left(\sqrt{\left(\frac{P_2}{B_3 q} + X_1\right)^2 + \left(X_2 - \frac{P_1}{B_3 q}\right)^2} - \sqrt{\frac{P_1^2 + P_2^2}{B_3^2 q^2}} \right)$$
 (3)

$$\chi \to an^{-1} \left(ext{sgn} \left(B_3 q \right) \left(rac{P_1^2 + P_2^2}{B_3 q} + P_2 X_1 - P_1 X_2
ight)$$
, $\left(-P_1 X_1 - P_2 X_2 \right) ext{sgn} \left(B_3 q \right)
ight)$

$$\varphi_0 \to \tan^{-1}(P_1, P_2) - \chi$$
 (4)

$$z_0 \to \frac{P_3 \chi}{B_3 q} + X_3 \tag{5}$$

$$s \rightarrow -\frac{\sqrt{P_1^2 + P_2^2}\chi}{B_3 q}$$

[Eugenio, Oliver, Tobi, helices:the nitty-gritty of their Parametrization, B2GM 2015]

Track Parameterisation

- → POCA = Point Of Closest Approach
- d₀ is the 2d signed distance of the POCA from the z axis, the sign depends on the angular momentum of the track (>0 in the fig.)
- \Rightarrow ϕ_0 is the angle between p_t and the x axis at the POCA, $\phi_0 \in [-\pi,\pi]$
- → the sign of w, the curvature, is the same as the charge of the track (>0 in the fig.)

ongitudinal View

- ightharpoonup tanλ is the ratio of p_z and p_t, λ ∈ [-π,π]
- z₀ is the signed distance of the POCA from the transverse plane

