

VXDTF2 Status Report from Karlsruhe

Felix Metzner | 18th September 2017

INSTITUT FÜR EXPERIMENTELLE TEILCHENPHYSIK (ETP)

Overview

- VXDTF2 Status Report
 - Current VXDTF2 Performance
 - New Feature: 2-Staged Overlap Resolving
 - Overlap SpacePoint Exclusion
 - Subpath Evaluation
 - MVA Track Quality Estimators
- Study of Effects of Reduced PXD Integration Time
 - Study Description
 - Results

Current Performance of the VXDTF2

	Finding Eff.	Fake Rate	Clone Rate	Runtime / Event
VXDTF1	84.04	18.07	0.41	32.7 ms
VXDTF2	93.58	20.62	0.43	16.3 ms

Current Performance of the VXDTF2

	Finding Eff.	Fake Rate	Clone Rate	Runtime / Event
VXDTF1	84.04	18.07	0.41	32.7 ms
VXDTF2	93.58	20.62	0.43	16.3 ms

10-Moun SectorMap was used

Runtime of VXDTF2 can still be improved by

- removing unnecessary SpacePoint relations (already merged)
- replacing Sector-ID strings by Sector-ID integers (already merged)

Fake Rate can still be reduced by

- the application of the DAF for the final fit
- a cut on the Quality Index

Finding Efficiency loss of 1-2 %-points due to MC tracks sharing clusters

Current problem: Memory usage due to number of candidates.

New 2-step ansatz for Overlap Resolution:

Step 1 — During Path Finding

- 2 Tracks compete only if they share at least 2 SpacePoints
- All competing Track Candidates are part of a Family
- ⇒ Resolve overlap for each Family separately
 - \Rightarrow Smaller overlap matrices and less candidates

Step 2 — As usual.

- NEW: Add subpaths of Track Candidates
- Estimate Track Candidate quality
- Resolve cluster overlap as usual...

Before Step 1: All Cluster Overlaps of an Example Event

Cluster Overlap

- Each Node represents a candidate
- Two Nodes are connected if they are overlapping
- The colors represent the matched MC Tracks
- Bright RED represents no match ⇒ a Fake!

Before Step 1: All Cluster and 2-SP Overlaps of an Example Event

Cluster Overlap

2 SpacePoint Overlap

After Step 1: Cluster Overlaps after resolving 2-SP Overlap

Cluster Overlap after 2-SpacePoint Overlaps are resolved

	All candidates	Best candidates
Avg. Clones	31.35±0.05	2.81 ± 0.02
Avg. Fakes	294.41 ± 0.06	15.18 ± 0.03
Finding Eff.	96.24 ± 0.06	95.94 ± 0.06
Hit Eff.	97.13 ± 0.03	97.11 ± 0.03
Hit Purity	83.78 ± 0.02	93.02 ± 0.04

Application of Step 1

Evaluation of 2-SP Overlaps and generation of Families

- based on SegmentNetwork
- during Cellular Automaton

Resolving after PathFinding

- ✓ 2-SP Overlap resolved for each Familiy separately via highest QI
- Implementation on Stash
- Does not solve Memory Problem . . .

Resolving during PathFinding

- Only the best Candidate of a Family is created
- ✓ Solves Memory Issue
- Not yet on Stash...

All results shown in the following were obtained with Resolving after PathFinding!

Current problem: Memory usage due to number of candidates.

New 2-step ansatz for Overlap Resolution:

Step 1 — During Path Finding

- 2 Tracks compete only if they share at least 2 SpacePoints
- All competing Track Candidates are part of a Family
- ⇒ Resolve overlap for each Family separately
 - ⇒ Smaller overlap matrices and less candidates

Step 2 — As usual...

- NEW: Add subpaths of Track Candidates
- Estimate Track Candidate quality
- Resolve cluster overlap as usual...

Step 2: Add Subpaths of remaining Chains as new Candidates

Cluster Overlap after 2-SpacePoint Overlaps are resolved

Cluster Overlap with new Subpath Candidates

Cluster Overlap with new Subpath Candidates

- Step 1 reduces number of candidates significantly.
- This allows for creation of new candidates from Subpaths in Step 2
- Inclusion of subpaths enables the VXDTF2 to retain previously incompatible candidates!

Benefit: Overlap SpacePoint Exclusion

Resolving Overlap between 2 valid Track Candidates:

- ⇒ Add Subpaths without problematic SP
- ⇒ Estimate quality of new candidates
- ⇒ Keep best combination

Why new Candidates? Because otherwise...

- special method to estimate quality necessary;
- special treatment in Greedy/Hopfield needed.

More candidates are no problem thanks to 2-Staged Overlap Resolving!

	Finding Eff.	Fake Rate	Clone Rate	Runtime / Event
VXDTF2 Original	93.58	20.62	0.43	16.3 ms
VXDTF2 w/ 2-Stage	94.01	20.03	0.40	14.5 ms

Hit-Efficiency drops from 96.4 to 95.4 due to missing SP for one Track...

Benefit: Subpath Evaluation

Has yet to be studied to determine influence on FoM and runtime!

⇒ Could improve Hit Purity

MVA Track Quality Estimators

Improvement of Quality Estimation by

- Combining regular QIs with additional variables
- via Boosted Decision Tree
- trained with MC-QI as target
- ⇒ Output behaves like a probability

Variables:

- QI and χ^2 of respective fit
- Number of SpacePoints
- Momentum Estimation from fit
- Charge and maxCharge of Cluster
- Cluster size
- Cluster timing (not yet available)

Cut on MVA Triplet QI

MVA Track Quality Estimators

Improved MVA QIs

- can reduce Fake Rate efficiently
- ⇒ Cut on QI to reduce Fakes
- slightly increase Finding Efficiency
- are affordable regarding runtime

Further Plans:

- Not yet on Stash (underway)
- Promising Cluster Timing variable not yet used...
- Thorough study necessary to evaluate full potential
- MVA-QI estimation online or offline?

Cut on MVA Triplet QI

Study of Effects of Reduced PXD Integration Time Study

Evaluation of the influence of the integration time of the PXD with the cases

- 100 ns integration time
- \blacksquare 20 μ s integration time

on 6-Layer VXD-Tracking with VXDTF2 also used for the PXD Data Reduction (DR).

⇒ Analysis Quantitative Effects on the Figures of Merit

In all cases at least 3 SVD Space Points are required for a candidate.

Study of Effects of Reduced PXD Integration Time Study

Simulation of $\Upsilon(4S)$ events with background from campaign 15.2 with

1000 events per sample

PXD time window in the BeamBkgMixerModule of

- 20 μ s: minTimePXD = -10000 ns; maxTimePXD = +10000 ns
- 100 ns: minTimePXD = -50 ns; maxTimePXD = +50 ns

Data Reduction turned

- on
- off

Evaluated with 6-Layer-SectorMap

- from Database (Default)
- trained on 10–Moun Sample (Custom)

Study of Effects of Reduced PXD Integration Time

Resu	lts
------	-----

	Finding Eff.	Fake Rate	Clone Rate
100 ns	95.42	36.65	1.35
20 μ s	90.81	33.61	1.29

Study of Effects of Reduced PXD Integration Time

Results

	Finding Eff.	Fake Rate	Clone Rate
100 ns	94.81	30.43	0.63
20 μ s	92.27	29.09	0.68
100 ns w/o DR	91.91	28.12	0.49

Study of Effects of Reduced PXD Integration Time Overview of Results

Integration Time	100 ns			20 μs	
Sector Map	Default	Custom	Custom	Default	Custom
Data Reduction	✓	✓	X	✓	✓
Finding Efficiency	95.42	94.81	91.91	90.81	92.27
Clone Rate	1.35	0.63	0.49	1.29	0.68
Fake Rate	36.65	30.43	28.12	33.61	29.09
Mean #Fakes	2.37	1.51	1.22	1.82	1.30
Hit efficiency	96.16	95.84	95.82	94.74	94.73
Hit Purity	98.47	98.47	98.55	96.45	96.82
PXD Hit Efficiency	91.91	91.62	94.04	85.40	85.90
PXD Hit Purity	90.10	91.13	94.00	82.94	84.48
SPTCs / Event in 10 ³	1.4	0.5	2.1	9.8	2.5

Résumé:

- Lower Integration Time ⇒ increased Finding and PXD Hit Efficiency
- SectorMap choice strongly affects Fake Rate