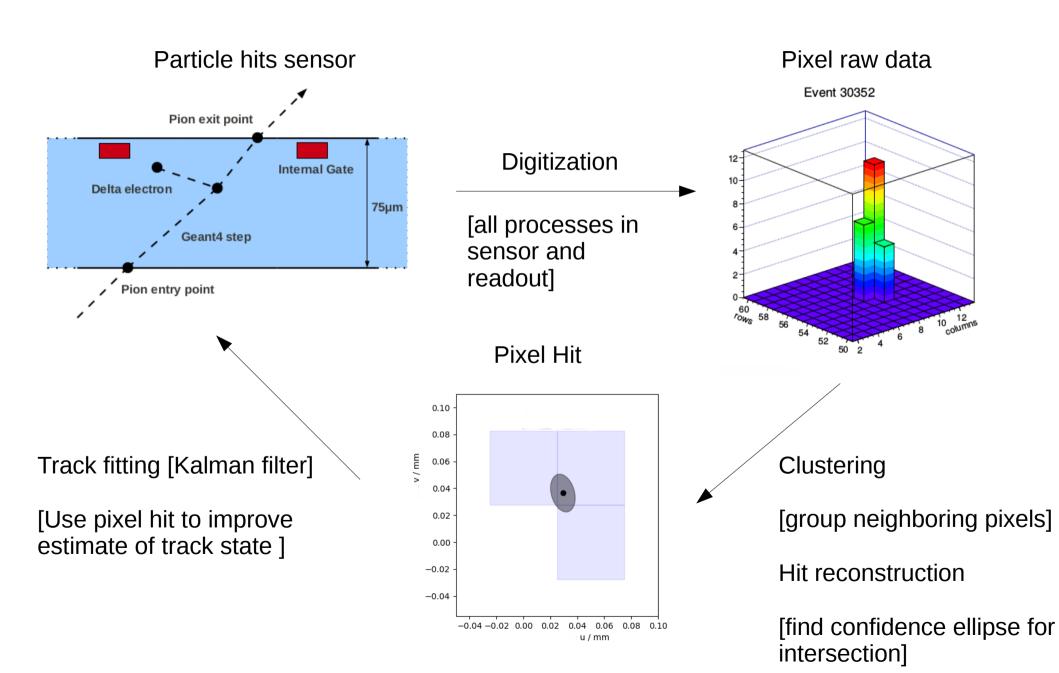
New ideas on PXD hit reconstruction and calibration from beam data

B. Schwenker

University of Göttingen

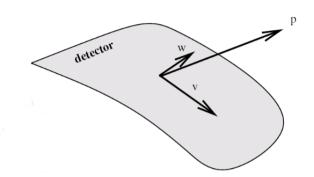
PXD hit reconstruction



Pixel hits and the Kalman filter

5D track state on sensor midplane:

$$x = (\tan \theta^u, \tan \theta^v, u^x, v^x, q/p)^T$$



2D pixel hit coordinate + covariance matrix:

$$m = (u^m, v^m) \qquad V = \operatorname{Cov}(u^m - u^x, v^m - v^x) = \begin{pmatrix} V_{uu} & V_{uv} \\ V_{vu} & V_{vv} \end{pmatrix}$$

Improve predicted track state using pixel hit from sensor k:

$$S_k = HP_k^- H^T + V_k$$

$$K_k = P_k^- H^T S_k^{-1}$$

$$\bar{x}_k = \bar{x}_k^- + K_k [m_k - H\bar{x}_k^-]$$

$$P_k = P_k^- - K_k S_k K_k^T$$

- :- The Kalman filter needs unbiased hit coordinates
- :- and consistent (not too large and not too big) hit covariance matrix
- :- The Kalman filters does not tell us how to get these numbers.

Looking for some guidance

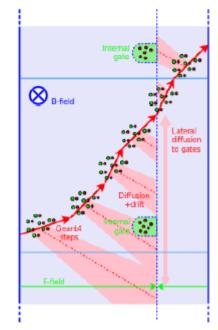
:- We have our digitizers:

Detector response = random numbers + detector physics

Energy loss straggling, Lorentz effect, drift + diffusion, el. Noise, ADC ...

:- One can formalize this idea using recursive Bayesian filters

Given a cluster c_k at plane k, the 'filtered' distribution for the track State can be computed by Bayes rule:



[PXDDigitizer]

$$p(x_k|c_{1:k}) = \frac{1}{Z_k} p(c_k|x_k) p(x_k|c_{1:k-1})$$
 Filtered distribution Predicted distribution

Predicted distribution, using clusters on past sensors.

Measurement model (cond. Pdf) = digitizer

Bayesian cluster shape filter

- :- The 'typical' tracking scenario:
- → The KF predicted track state has imprecise information on the intersection point (relative to precision of the pixel hit)
- → The KF contains precise information on momentum and incidence angles into sensor.
- :- Hit reconstruction can be conditioned on 'beam' condition data from KF

$$\beta_k = (\tan \theta_k^u, \tan \theta_k^v, q/p_k)^T$$
 — [already available on master (P. Kodys)]

:- We can compute cluster moments from measurement model (in principle)

$$m_k(c_k|\beta_k) = \int Hx_k p(c_k|x_k) du_k^x dv_k^x$$
 [input to KF for track fitting]

$$V_k(c_k|\beta_k) = \int (Hx_k - m_k(c_k|\beta_k)) (Hx_k - m_k(c_k|\beta_k))^T p(c_k|x_k) du_k^x dv_k^x.$$

Bayesian cluster shape filter

:- This looks infeasible, but we have discrete translation symmetry to our help

Shift cluster by m,n pixel units

$$p(c|x) = p(c'|x')$$

$$c' = \mathbf{T}(m, n)c = \{vc_i + m, uc_i + n, s_i\}_{i=0,..,n}$$

$$x' = \mathbf{T}(m, n)x = (\tan \theta^u, \tan \theta^v, u^x + nP_u, v^x + mP_v, q/p)^T$$

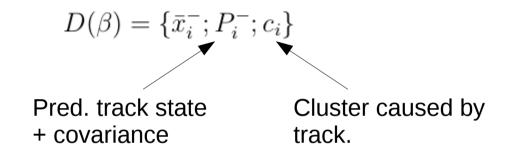
Shift intersection by m,n pixel pitches

- :- This will only hold for well designed and well calibrated detector → other topic ;)
- :- In case symmetry holds, we only need cluster moments for a much smaller subset of clusters called shapes.

Shape == Cluster with min(ucells) = 0 && min(vcells=0)

Training data and bootstrapping

:- We can do all computations from sufficiently large training data for some beam condition.



:- Training data can originate from real experiment or generated from simulation

TrueHits + related Digits | 'fitted' track states + close-by Digits

- :- Number of tracks in training data should not be too large (<1Mio).
- :- The PXD uses 8bit ADC codes → the number of shapes is too large
- :- In order to reduce the number of shapes, we need some sort of 'shape clustering'

Digital labels and their moments

:- One very robust shape clustering is simply ignoring the signals → digital labels

$$l_{\mathrm{D}}(s)=$$
 '-'.join('V:'+str(d[0])+'.U:'+str(d[1]) for d in s)

Here a label is really a string literal. For example: V:0.U:0 == one digit cluster

:- The number of digital labels is typically rather small (<<100) for a given beam condition

Label probability Label hit coordinate Shifts from cluster to shape $p(l|\beta) = \frac{|D(\beta,l)|}{|D(\beta)|} \qquad o(l|\beta) = \frac{1}{|D(\beta,l)|} \sum_{i \in D(\beta,l)} H\bar{x}_i^- - \mathbf{F}(c_i)$ #tracks / labels in data

Label covariance matrix

$$V(l|\beta) = \frac{1}{|D(\beta, l)| - 1} \sum_{i \in D(\beta, l)} (H\bar{x}_i^- - \mathbf{F}(c_i) - o(l|\beta)) (H\bar{x}_i^- - o(l|\beta))^T - A(\beta)$$

Some examples

:- We take parameters from angular scan in a PXD test beam as reference

:- 4GeV electrons, 200k single track events, B=0T

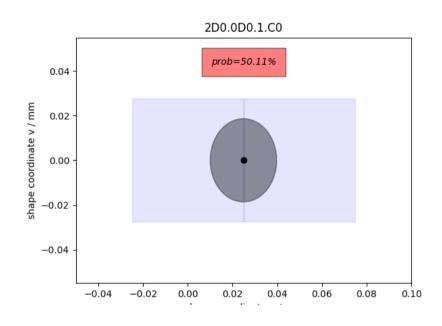
:- PXDDigitizer parameters: (Pixelkind 55x50um^2)

ADCFineMode : False

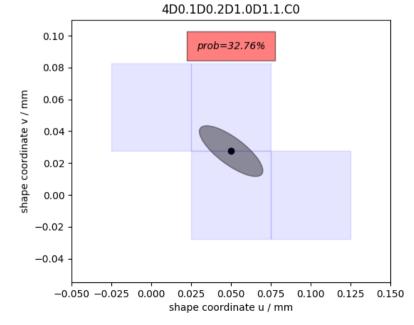
Gq : 0.77nA/e

SourceBorder : 6.3um
DrainBorder : 6.3um
ClearBorder : 4.2um
El. Noise : 150e
ChargeThreshold : 5ADU

Some examples

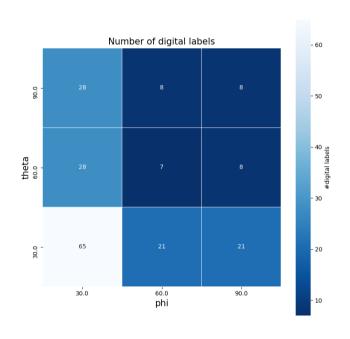


- :- Sim data for test beam situation (theta=90° / phi=60°)
- :- ~50% of all digital labels are like that
- :- Bayesian filter gives positions and 2x2 covariance matrix



- :- Sim data for larger incidence angles (theta=60° / phi=30°)
- :- most important single label (~33%)
- :- Remember: Estimate of UV correlation Based on:
 - :- Geometry of firing pixel cells
 - :- Conditioned on incidence angles

Overview: Results from digital labels

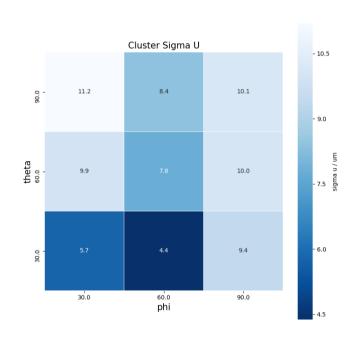


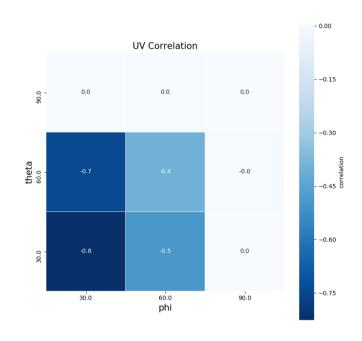


- :- Number of labels grows with incidence angles into sensor
- :- Require >200 to accept label and estimate corrections

:- Coverage = Prob to find correction given some cluster

Overview: Results from digital labels



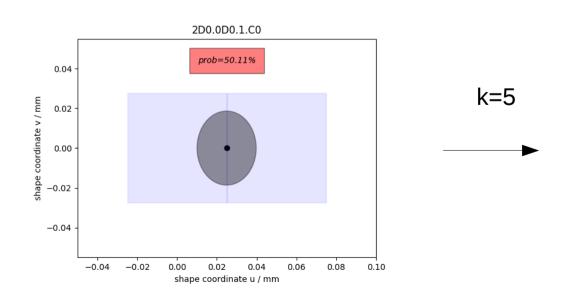


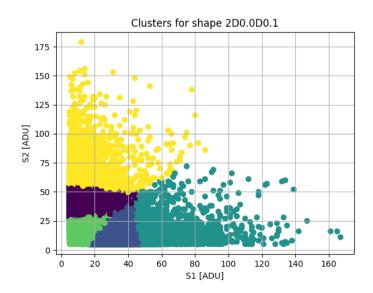
- :- Weighted average of cluster sigmaU over all digital labels
- :- Weight = Label probability

- :- Average uv correlations when both incidence angles non zero
- :- Correlations significant for certain beam conditions.

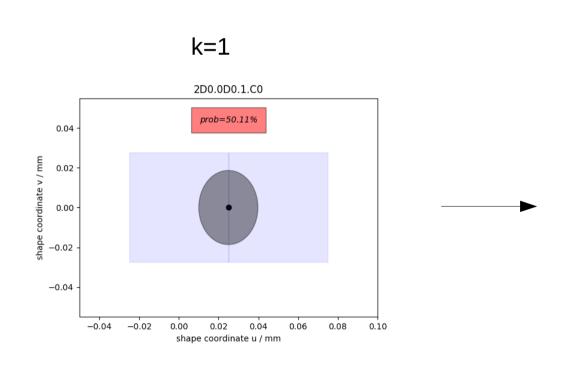
How to incorporate digit signals?

- :- Digital labels provide useful clusters of shape, but sometimes too big.
 - → too many shapes in digital label → significant loss of resolution
- :- Idea: further sub division of shapes inside the same digital label
 - → for example using k-means clustering
- :- Example: '2u' cluster at theta=90° / phi=60°

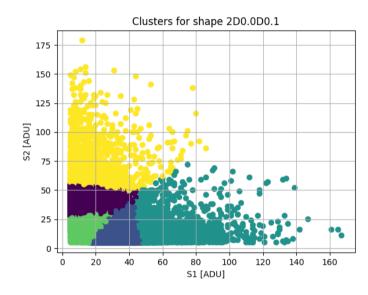


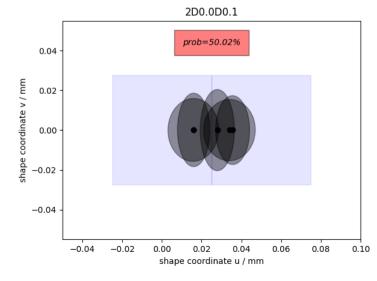


How to incorporate digit signals?



:- Consider now the results of K-means clustering as labels

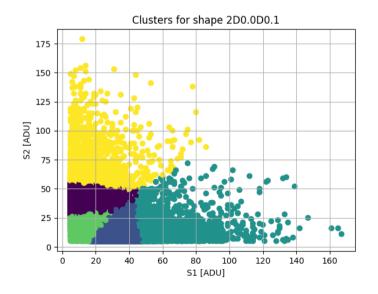


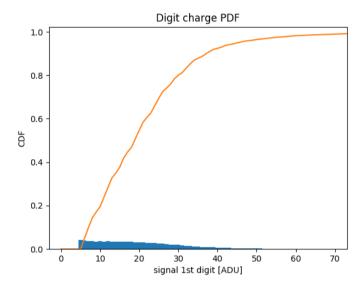


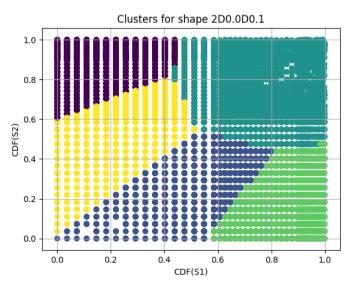
Some pit falls of K-means

K means works best when density of points is constant \rightarrow we have Landau tails

- → Transform digit signals before clustering
- → Not fully implemented yet.



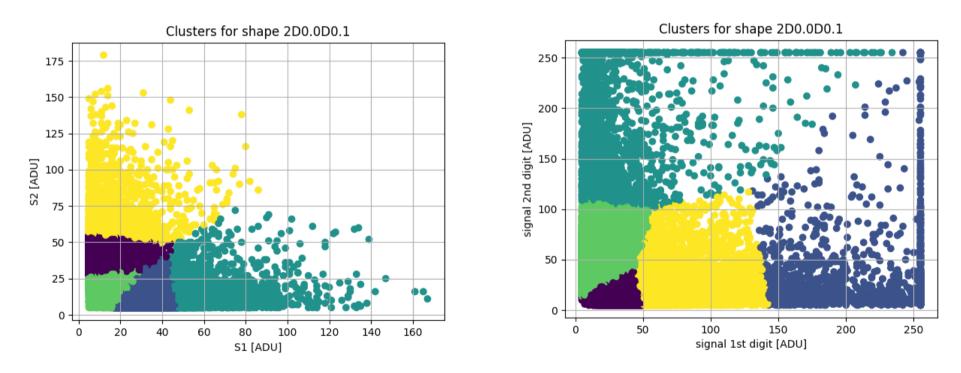




Some artefacts in simulation

TB data (Nov 15)

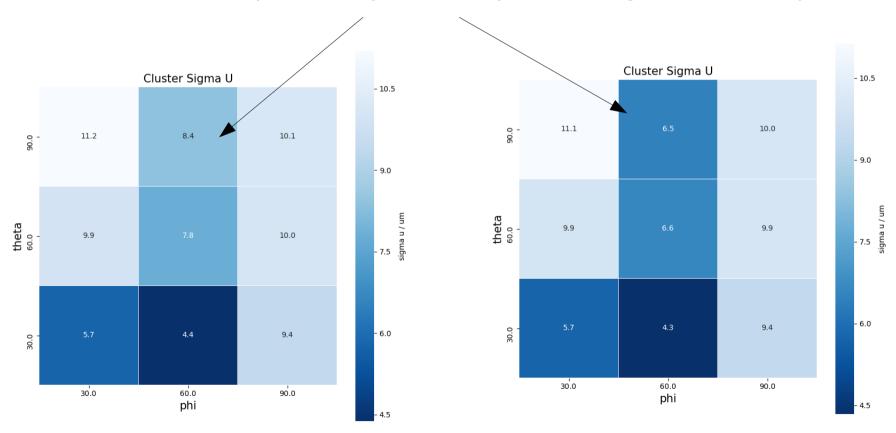
Basf2 simulation



- :- basf2 simulation tends to produce too many very large signals
- :- probably happens when PXDSimHits are produced ...

Improvements from K means (using signals directly)

K = 1 Improvements visible K = 5 (but in many cases simpel clustering is unreliable ...)



Summary & Conclusion

- :- Presented new approach for hit reconstruction in pixel (strip) detectors
 - estimates full 2x2 covariance matrix
 - training on real data and simulation possible
 - no 'heuristics' needed; instead method is data driven
- :- Some aspects still need a bit of work
 - shape clustering directly with K means is not ideal way
 - pre-processing needed: normalize signals before clustering
 - different clustering methods other then K means (???)
- :- Full blown implementation in pxd sw needs to be considered
 - Current cluster shape correction by P. Kodys works differently

PXD calibration from beam data

:- PXDDigitizer parameters:

ADCFineMode : False

Gq : 0.77nA/e SourceBorder : 6.3um DrainBorder : 6.3um ClearBorder : 4.2um El. Noise : 150e ChargeThreshold: 5ADU

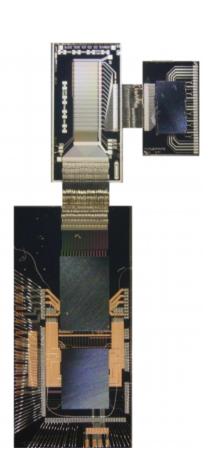
- :- All of these parameters affect cluster shapes (→ hit reconstruction)
- :- Need a data driven way to estimate these paramters from beam data
- :- Tweak parameters q until label probabilities from reference data (from experiment) and simulated data match:

$$M(q) = \sum_{i} \sum_{l} |p(l|\beta_i) - p'(l|\beta_i, q)|^2$$

:- Initial implementation working and tested with beam data from Nov. 15

Backup

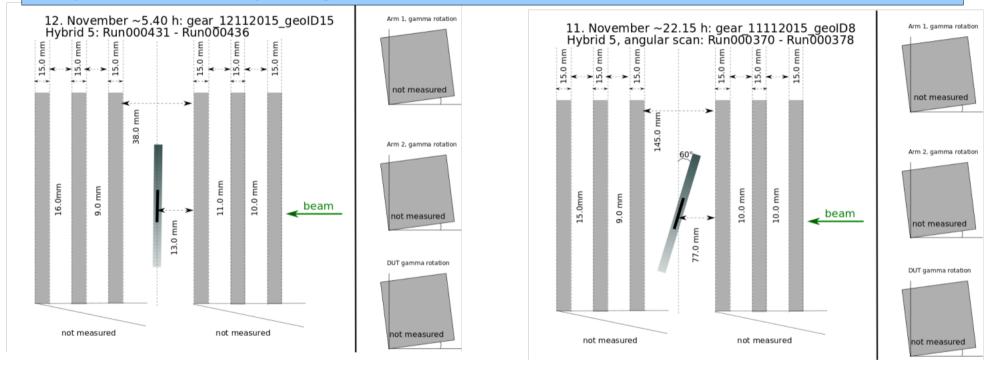
Small PXD9 @ DESY (Nov. 2015)



- First Belle II type matrix in a test beam with EUDET telescope
- Called Hybrid5 (H5)
- PXD9 small Belle II type matrix
 - Pixel pitch: $50x55 \mu m^2 (\rightarrow layer 1 PXD)$
 - Gate length: $5\mu m$ (\rightarrow like PXD)
 - thin gate oxide (→ like PXD)
- Still a very valuable data set
 - High resolution telescope (in-pixel study)
 - High statistics: Millions of (precise) tracks matched to PXD cluster
 - Angular scan: Tilt of PXD sensor against beam (up to 60 degree)

Telescope geometries

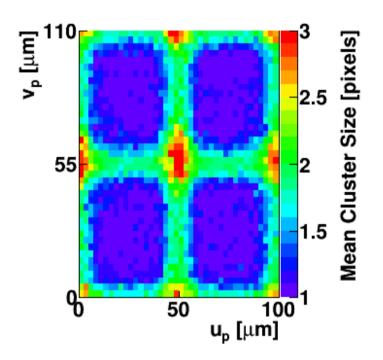
https://docs.google.com/spreadsheets/d/1Ob5KCRMYuoHW5TROI7iMACItBA29Jw7i2kWqMmwhCbA/edit?pli=1#gid=491395880



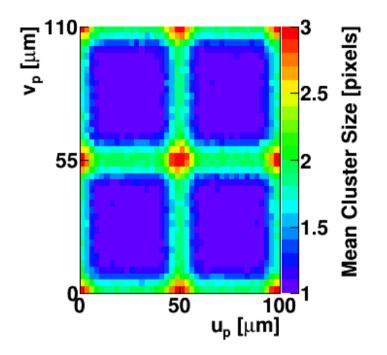
- :- small distances to keep tel. interpolation error small.
- :- Hybrid 5 mechanics a bit bulky → larger distances to PXD
- :- Rotating Hybrid 5 implies moving arms away and increases material.
- :- Different distances for all angles, still interpolation errors @ PXD grows

H5: Inter pixel charge sharing

Small PXD9 in test beam



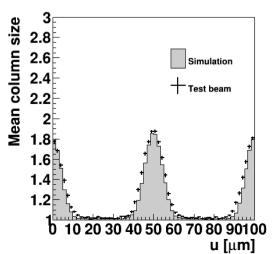
"Tuned" PXD9 Digitizer



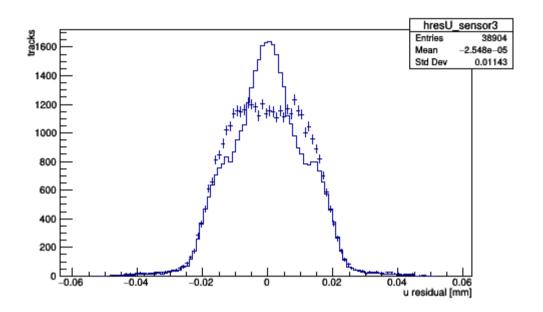
Summary of "tuned" digitizer parameters PXD9 50x55:

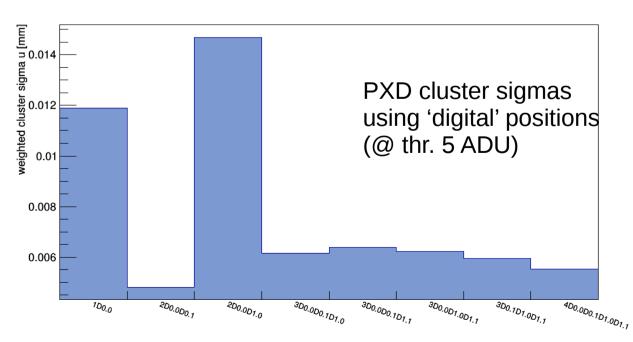
- :- Charge sharing region between rows: ~12um
- :- Charge sharing region between columns: ~12um

Expected resolution for two row cluster ~3.5um



H5: Residuals at perp. incidence





- :- compare u residuals using different position reconstructions (PXD)
 - → center-of-gravity (crosses)
 - → digital (solid line)
- :- 'Digital': using same method as for M26 sensors (hit thr. 5ADU)
- :- Cog performs worse than digital
 - → charge sharing restricted to
 - ~10um region between pixels
 - → true for close to perp. incidence
 - :- Cluster sigmas obtained after subtracting tel. Interpolation error
 - :- double column cluster have sigma ~5um.
 - :- single pixel cluster ~12um