
IEKP - KIT

Combinatorial Kalman Filter - PXD and SVD
Weekly Tracking Meeting.

Nils Braun | 19.09.2017

www.kit.edu

http://www.kit.edu


Recap

1 For each Seed: find all possible matching hit trains, using:
three layerwise filters
extrapolations
Kalman updates

2 Apply a filter on each found candidate

3 Resolve Overlaps

Combinatorial Kalman Filter - PXD and SVD - Nils Braun 19.09.2017 2/21



What has happened since last time? - I

I have found a bug in my Kalman Filter implementation, that only
occurred in the PXD case.

Eigen and ROOT

Eigen and ROOT have different matrix element order definitions! (Actually,
I was aware of this, but this information got lost during my
implementation...)

Tests

Always write tests!

PXD implementation finished and tested
e.g. I have trained an MVA filter for overlap check for PXD ⇒ now
MC-free implementation possible.

Combinatorial Kalman Filter - PXD and SVD - Nils Braun 19.09.2017 3/21



What has happened since last time? - II

Caching works now :-) Problem was with the definition of a ”plane” in
GenFit (and again missing documentation...)

Quite some code changes, making it (hopefully) easier for Miriam.

Not only the overlap check, but also the layer filters work with a BDT
now.

recoHit.constructMeasurementsOnPlane

Be aware that recoHit.constructMeasurementsOnPlane creates a
new object, you have to delete yourself afterwards!

jemalloc

Use jemalloc to test for memory leaks and heap usage.

New subdetector efficiencies/purities are very hard to understand...

Combinatorial Kalman Filter - PXD and SVD - Nils Braun 19.09.2017 4/21



/local/scratch/ssd/nbraun/basf2/bin/Linux_x86_64/clang/basf2
Total MB: 194.7
Focusing on: 194.7
Dropped nodes with <= 1.0 abs(MB)
Dropped edges with <= 0.2 MB

Belle2
EventProcessor

callEvent
0.0 (0.0%)

of 194.7 (100.0%)

Belle2
RootInputModule

event
0.0 (0.0%)

of 127.9 (65.7%)

127.9

Belle2
TrackFindingCDC

FindletModule
applyFindlet

0.0 (0.0%)
of 55.3 (28.4%)

55.3

Belle2
CDCToSVDSpacePointCKFFindlet

apply
0.0 (0.0%)

of 5.2 (2.7%)

5.2

Belle2
BaseRecoFitterModule

event
0.0 (0.0%)

of 4.1 (2.1%)

4.1

Belle2
TrackFinderMCTruthRecoTracksModule

event
0.0 (0.0%)

of 1.8 (0.9%)

1.8

Belle2
EventProcessor

process
0.0 (0.0%)

of 194.7 (100.0%)

Belle2
EventProcessor

processCore
0.0 (0.0%)

of 194.7 (100.0%)

194.7

Belle2
EventProcessor
processEvent

0.0 (0.0%)
of 194.7 (100.0%)

194.7

194.7

Belle2
Framework

process
0.0 (0.0%)

of 194.7 (100.0%)

194.7

Belle2
RootInputModule

readTree
113.0 (58.1%)

of 127.9 (65.7%)

127.9

ROOT
new_Belle2cLcLCDCSimHit

0.0 (0.0%)
of 4.9 (2.5%)

4.9

ROOT
new_Belle2cLcLECLHit

0.0 (0.0%)
of 3.9 (2.0%)

3.9

ROOT
new_Belle2cLcLRelationElement

0.0 (0.0%)
of 2.3 (1.2%)

2.3

ROOT
new_Belle2cLcLSVDSimHit

0.0 (0.0%)
of 1.3 (0.6%)

1.3

Belle2
TrackFindingCDC

StereoHitFinder
apply

0.0 (0.0%)
of 39.9 (20.5%)

39.9

Belle2
TrackFindingCDC

SegmentFinderFacetAutomaton
apply

0.0 (0.0%)
of 11.9 (6.1%)

11.9

Belle2
TrackFindingCDC

SegmentTrackCombiner
apply

0.0 (0.0%)
of 1.5 (0.8%)

1.5

Belle2
TrackFindingCDC

ClusterPreparer
apply

0.0 (0.0%)
of 1.0 (0.5%)

1.0

std
vector
insert

(inline)
10.6 (5.5%)

of 43.2 (22.2%)

std
vector

emplace
(inline)

32.5 (16.7%)

32.5

Belle2
TrackFindingCDC
MatcherInterface

apply
(inline)

0.0 (0.0%)
of 34.0 (17.5%)

32.5

std
vector
reserve
(inline)
0.0 (0.0%)

of 7.3 (3.7%)

7.3

Belle2
TrackFindingCDC

StereoHitTrackQuadTreeMatcher
match

0.0 (0.0%)
of 32.5 (16.7%)

32.5

Belle2
TrackFindingCDC

SharingHitsMatcher
match

0.0 (0.0%)
of 1.5 (0.8%)

1.5

Belle2
TrackFindingCDC

SimpleBoxDivisionHoughTree
findSingleBest

0.0 (0.0%)
of 32.3 (16.6%)

32.3

Belle2
TrackFindingCDC

WithWeightedItems
insert

(inline)
0.0 (0.0%)

of 32.5 (16.7%)

32.5

Belle2
TrackFindingCDC

DynTree
Node
walk

0.0 (0.0%)
of 32.3 (16.6%)

78.5

Belle2
TrackFindingCDC

WithWeightedItems
insert

0.0 (0.0%)
of 32.3 (16.6%)

32.3

Belle2
TrackFindingCDC

DynTree
walk

(inline)
0.0 (0.0%)

of 32.3 (16.6%)

32.3

Belle2
TrackFindingCDC

WeightedFastHoughTree
findHeaviestLeafSingle

0.0 (0.0%)
of 32.3 (16.6%)

32.3

Belle2
TrackFindingCDC

WeightedFastHoughTree
fillWalk
(inline)

0.0 (0.0%)
of 32.3 (16.6%)

Belle2
TrackFindingCDC

WeightedFastHoughTree
walkHeighWeightFirst

(inline)
0.0 (0.0%)

of 32.3 (16.6%)

32.3

Belle2
TrackFindingCDC

WeightedFastHoughTree
findHeaviestLeaf

(inline)
0.0 (0.0%)

of 32.3 (16.6%)

32.3

32.3

32.3

32.3

TObject
operator

new
(inline)

15.1 (7.8%)

Belle2
TrackFindingCDC

FacetCreator
apply

0.0 (0.0%)
of 10.5 (5.4%)

10.5

Belle2
TrackFindingCDC

FacetCreator
createFacets

0.0 (0.0%)
of 10.5 (5.4%)

10.5

Belle2
TrackFindingCDC

FacetCreator
createFacetsForHitTriple

0.0 (0.0%)
of 10.5 (5.4%)

10.5

10.5

__gnu_cxx
new_allocator

allocate
(inline)
7.3 (3.7%)

std
_Vector_base
_M_allocate

(inline)
0.0 (0.0%)

of 7.3 (3.7%)

std
allocator_traits

allocate
(inline)
0.0 (0.0%)

of 7.3 (3.7%)

7.3

7.3

std
vector

_M_allocate_and_copy
(inline)

0.0 (0.0%)
of 7.3 (3.7%)

7.3

7.3

Belle2
TreeSearchFindlet

apply
0.0 (0.0%)

of 5.2 (2.7%)

5.2

Belle2
TreeSearchFindlet

traverseTree
0.0 (0.0%)

of 5.2 (2.7%)

5.2

20.5

Belle2
StateTransformer

transform
0.0 (0.0%)

of 5.1 (2.6%)

5.1

std
vector
resize

(inline)
5.1 (2.6%)

5.1

4.9

Belle2
TrackFitter
fit@134880

0.0 (0.0%)
of 3.8 (2.0%)

3.8

3.9

Belle2
TrackFitter

fitWithoutCheck
2.3 (1.2%)

of 3.5 (1.8%)

3.5

std
vector

emplace_back
(inline)
2.9 (1.5%)

2.3

Belle2
DataStore

addRelation
0.4 (0.2%)

of 1.8 (0.9%)

TClonesArray
AddrAt
(inline)
1.4 (0.7%)

1.1

Belle2
RelationsInterface

addRelationTo
(inline)

0.0 (0.0%)
of 1.8 (0.9%)

1.8

Belle2
RecoTrack

addHit
0.0 (0.0%)

of 1.8 (0.9%)

Belle2
RecoTrack

addHitWithHitInformation
(inline)

0.0 (0.0%)
of 1.1 (0.6%)

1.1

Belle2
RecoTrack
addCDCHit

(inline)
0.0 (0.0%)

of 1.0 (0.5%)

1.0

Belle2
TrackFindingCDC

SharingHitsMatcher
apply

0.0 (0.0%)
of 1.5 (0.8%)

1.5

1.5

1.5

Belle2
TrackFindingCDC

WeightedNeighborhood
appendUsing

0.0 (0.0%)
of 1.3 (0.7%)

1.3

1.3

1.1

1.0



BDT in layerwise filters

Benefits:

Multivariate method

Training is ”simple”

Variable importance order gives interesting insights

Drawbacks:

Slow

Training on data needed?

Combinatorial Kalman Filter - PXD and SVD - Nils Braun 19.09.2017 6/21



Combinatorial Kalman Filter from
CDC to SVD



Proposed Workflow

CDC TF SVD CKF

VXDTF2

Merger

Related Tracks
Combiner

Relations &

VXD tracks

CDC tracks

Remaining

space points

VXD tracks

CDC tracks

without partner

Relations

Combinatorial Kalman Filter - PXD and SVD - Nils Braun 19.09.2017 8/21



Setup

Events for the following

Typical generic Υ(4S) with 1000 events using 15th campaign background.

Current CDC + VXDTF2 for SVD only, default merger

CKF CDC + CKF, no merger needed

CKF with MC CDC CDC track finding is replaced by MC

MC CKF As CKF, but using MC information in the CKF filters

CKF + VXDTF2 as described before

MC Matching

Comparing the performance by hit-matching doing on:

All Hits

SVD hits only

Combinatorial Kalman Filter - PXD and SVD - Nils Braun 19.09.2017 9/21



Performance SVD only

Current CKF CKF + VXDTF2
Finding Efficiency (prim) 0.946993 0.729256 0.965953
Finding Efficiency (all) 0.913839 0.712227 0.94654
Hit Efficiency (prim) 0.952381 0.94865 0.951127
Hit Efficiency (prim) 0.901898 0.691809 0.918744
Hit Efficiency (all) 0.944942 0.941783 0.942848

Fake Rate 0.180379 0.0574972 0.193046
Clone Rate 0.00387263 0.011274 0.023548

Hit Purity (SVD) 0.987022 0.994279 0.989803

As overlap between CKF and VXDTF2 is large, no huge performance
boost expected

Fake Rate + Purity of CKF alone is good

Combination gives reasonable results

Combinatorial Kalman Filter - PXD and SVD - Nils Braun 19.09.2017 10/21



Performance

Current CKF
Finding Efficiency (prim) 0.950516 0.951217
Finding Efficiency (all) 0.834396 0.836262
Hit Efficiency (prim) 0.778926 0.793219
Hit Efficiency (prim) 0.740382 0.754524
Hit Efficiency (all) 0.747453 0.763059

Hit Efficiency (SVD) 0.842577 0.904544
Fake Rate 0.139165 0.135205
Clone Rate 0.100124 0.0711744
Hit Purity 0.92874 0.929191

Finding efficiency can not increase by design

Hit efficiency (especially SVD) increased

Clone rate dropped

Combinatorial Kalman Filter - PXD and SVD - Nils Braun 19.09.2017 11/21



Is this now good or not?

First answer: Well...

Second answer:

Influence on hit efficiency visible, also because ”merging” is not
needed anymore

It is hard to increase hit purity even more...

All in all, I hoped for more impact...

Problem: CDC tracks!

Combinatorial Kalman Filter - PXD and SVD - Nils Braun 19.09.2017 12/21



Is this now good or not?

First answer: Well...
Second answer:

Influence on hit efficiency visible, also because ”merging” is not
needed anymore

It is hard to increase hit purity even more...

All in all, I hoped for more impact...

Problem: CDC tracks!

Combinatorial Kalman Filter - PXD and SVD - Nils Braun 19.09.2017 12/21



Performance SVD only

CKF CKF with MC CDC MC CKF
Finding Efficiency (prim) 0.729256 0.918145 0.7579
Finding Efficiency (all) 0.712227 0.906919 0.745213
Hit Efficiency (prim) 0.94865 0.95482 0.962688
Hit Efficiency (prim) 0.691809 0.876663 0.729622
Hit Efficiency (all) 0.941783 0.947573 0.955452

Fake Rate 0.0574972 0.0477185 0.0211002
Clone Rate 0.011274 0.00507009 0

Hit Purity (SVD) 0.994279 0.993382 (1)

Combinatorial Kalman Filter - PXD and SVD - Nils Braun 19.09.2017 13/21



Performance

CKF CKF with MC CDC MC CKF
Finding Efficiency (prim) 0.951217 0.980567 0.951618
Finding Efficiency (all) 0.836262 0.951718 0.836184
Hit Efficiency (prim) 0.793219 0.965391 0.806137
Hit Efficiency (prim) 0.754524 0.94663 0.767135
Hit Efficiency (all) 0.763059 0.966506 0.776334

Hit Efficiency (SVD) 0.904544 0.941253 0.952157
Fake Rate 0.135205 0.115833 0.124333
Clone Rate 0.0711744 0.0142805 0.0504676
Hit Purity 0.929191 0.992893 0.933843

Combinatorial Kalman Filter - PXD and SVD - Nils Braun 19.09.2017 14/21



Combinatorial Kalman Filter from
CDC + SVD to PXD



Final CKF setup

Only start with tracks that actually do have SVD cluster attached
(only CDC information is very unprecise)

”Simple” sector-map like structure for selecting only valid hits

Make simple cuts on distance, χ2 etc. (extrapolation and Kalman
update are very precise for PXD as expected)

Overlap Filter based on MVA method (e.g. χ2 of full track, distance of
PXD part compared to rest track etc.)

All shown results include data reduction (although it is possible to run
without it)

Combinatorial Kalman Filter - PXD and SVD - Nils Braun 19.09.2017 16/21



Proposed Workflow

CDC TF SVD CKF

VXDTF2

Merger

Related Tracks
Combiner

PXD CKF

Related Tracks
Combiner

Relations &

VXD tracks

CDC tracks

Remaining

space points

VXD tracks

CDC tracks

without partner

Relations

Tracks

Combinatorial Kalman Filter - PXD and SVD - Nils Braun 19.09.2017 17/21



Setup

Events for the following

Typical generic Υ(4S) with 1000 events using 15th campaign background,
default data reduction.

PXD CKF Use CDC + VXDTF2 + Merger. Then add PXD hits with
CKF (only on SVD parts).

VXDTF2 VXDTF2 6-layer tracking.

MC CKF As PXD CKF, but using MC information in the CKF filters.

CKF2 As described before.

MC Matching

Comparing the performance by hit-matching doing on:

All Hits

PXD+SVD hits only

Combinatorial Kalman Filter - PXD and SVD - Nils Braun 19.09.2017 18/21



Performance on VXD only

CDC + VXDTF2 PXD CKF VXDTF2 MC CKF CKF2

Finding Efficiency (prim) 0.939255 0.861416 0.942206 0.959198
Finding Efficiency (all) 0.904712 0.827025 0.908592 0.937831
Hit Efficiency (prim) 0.943487 0.935308 0.941277 0.942186
Hit Efficiency (prim) 0.886175 0.80569 0.886877 0.903743
Hit Efficiency (all) 0.936428 0.928516 0.934078 0.934711

Hit Efficiency (PXD) 0.898676 0.910465 0.894867 0.893895
Hit Efficiency (SVD) 0.953914 0.942511 0.952495 0.95235
Ratio with 100 Eff 0.702971 0.603236 0.705242 0.731927

Fake Rate 0.138063 0.179119 0.135138 0.154934
Clone Rate 0.00289 0.00345 0.00289 0.0202749

Hit Purity (PXD) 0.91384 0.869401 1 0.914572

Combinatorial Kalman Filter - PXD and SVD - Nils Braun 19.09.2017 19/21



Performance

CDC + VXDTF2 PXD CKF VXDTF2 MC CKF CKF2

Finding Efficiency (prim) 0.946905 0.932807 0.948505 0.947105
Finding Efficiency (all) 0.828261 0.819022 0.830823 0.829658
Hit Efficiency (prim) 0.78024 0.77069 0.783382 0.795191
Hit Efficiency (prim) 0.738813 0.718905 0.743042 0.753129
Hit Efficiency (all) 0.750035 0.740053 0.752488 0.766414

Hit Efficiency (SVD) 0.852902 0.78214 0.847838 0.911699
Hit Efficiency (PXD) 0.835694 0.812261 0.903872 0.857076

Fake Rate 0.142922 0.177969 0.139526 0.137715
Clone Rate 0.0911653 0.0908829 0.092594 0.0635128

Hit Purity (SVD) 0.983385 0.97639 0.981929 0.970009
Hit Purity (PXD) 0.912553 0.857998 1 0.916476

Combinatorial Kalman Filter - PXD and SVD - Nils Braun 19.09.2017 20/21



Summary and Outlook

SVD case:

comparable performance to VXDTF2, but merging is better

still some room for improvements, but not that many (compared to
MC truth)

limited by CDC finding efficiency and track quality

PXD case:

works good (but still not perfect) as expected, because VXDTF2 is
not tuned for 6 layer tracking

Very fast (3 ms/Event)

Try to further increase purity (maybe use MVA here also to make
smooth transition between purity and efficiency)

In my opinion, there is no reason to not include this in the November
release.

Combinatorial Kalman Filter - PXD and SVD - Nils Braun 19.09.2017 21/21


