SIMONE MARZANI UNIVERSITÀ DI GENOVA & INFN-SEZIONE DI GENOVA

ALL-ORDERS CALCULATIONS FOR PDFs DETERMINATION

DESY - Hamburg, Monday 15th January 2018

mostly based on: large *x*:1507.01006, 1510.00375 small *x*:1607.02153, 1708.07510, 1710.05935

OUTLINE

- Introduction
- PDFs with large-x resummation
- PDFs with small-x resummation: evidence for BFKL dynamics in inclusive HERA data
- Conclusion and Outlook

- Parton distribution functions describe the non-perturbative structure of the colliding protons
- collinear factorisation implies their universality (up to power corrections)

$$\sigma(x,Q) = \sigma_0 C\left(\frac{x}{x_1 x_2}, \alpha_s(\mu)\right) \otimes f_1(x_1,\mu) \otimes f_2(x_2,\mu)$$

- coefficient functions (NLO,NNLO, N³LO)
- parton evolution (NLO,NNLO)
- electro-weak corrections

- quark mass effects
- target-mass corrections

- Parton distribution functions describe the non-perturbative structure of the colliding protons
- collinear factorisation implies their universality (up to power corrections)

$$\sigma(x,Q) \Rightarrow \sigma_0 C\left(\frac{x}{x_1 x_2}, \alpha_s(\mu)\right) \otimes f_1(x_1,\mu) \otimes f_2(x_2,\mu)$$

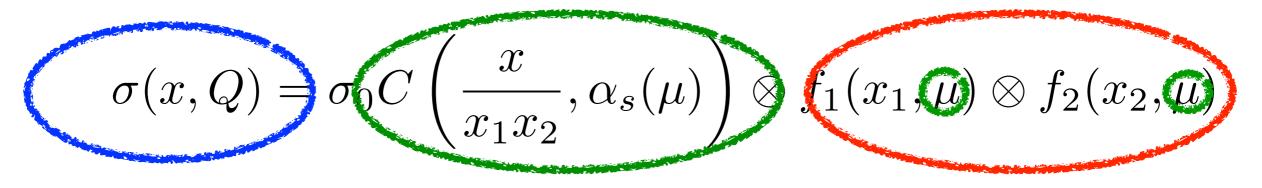
measure

- coefficient functions (NLO, NNLO, N³LO)
- parton evolution (NLO,NNLO)
- electro-weak corrections

- quark mass effects
- target-mass corrections

- Parton distribution functions describe the non-perturbative structure of the colliding protons
- collinear factorisation implies their universality (up to power corrections)

 $\sigma(x,Q) = \sigma_0 C\left(\frac{x}{x_1 x_2}, \alpha_s(\mu)\right) \otimes f_1(x_1,\mu) \otimes f_2(x_2,\mu)$


compute

measure

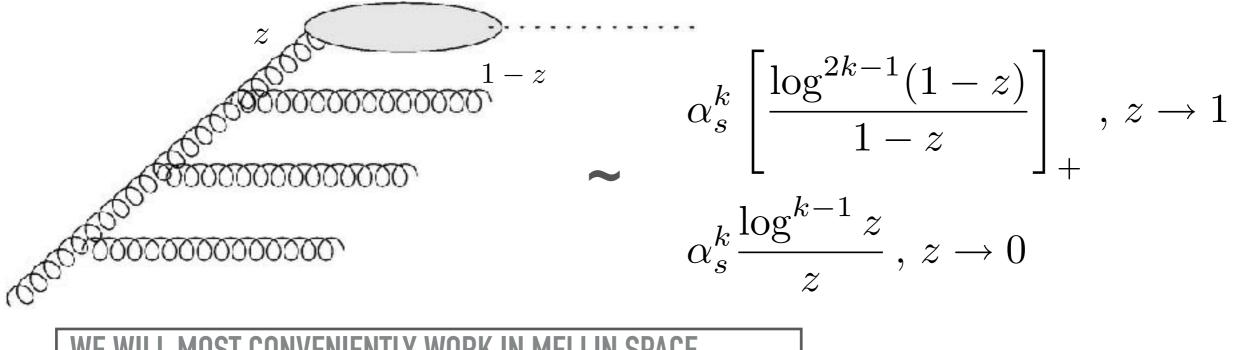
- coefficient functions (NLO,NNLO, N³LO)
- parton evolution (NLO,NNLO)
- electro-weak corrections

- quark mass effects
- target-mass corrections

- Parton distribution functions describe the non-perturbative structure of the colliding protons
- collinear factorisation implies their universality (up to power corrections)

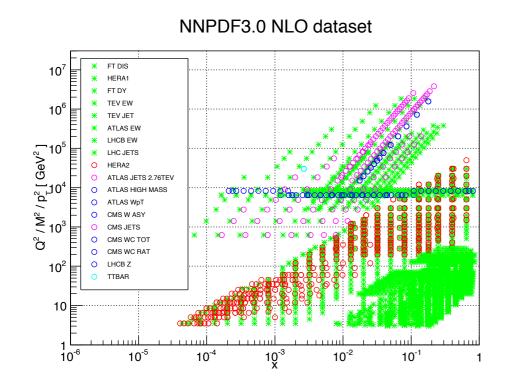
measure

compute


extract

- coefficient functions (NLO, NNLO, N³LO)
- parton evolution (NLO,NNLO)
- electro-weak corrections

- quark mass effects
- target-mass corrections


HIGHER-ORDER CORRECTIONS

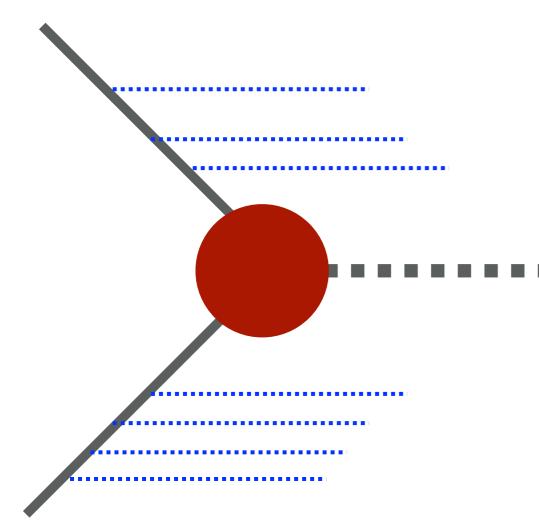
- Higher-order QCD corrections correspond to emission of extra partons or virtual corrections
- these corrections are enhanced in particular regions of phase-space

WE WILL MOST CONVENIENTLY WORK IN MELLIN SPACE SOFT-GLUON RESUMMATION: $Z \rightarrow 1 \rightleftharpoons LOGS OF N$ BFKL RESUMMATION: $Z \rightarrow 0 \rightleftharpoons POLES IN N$ (TYPICALLY AT N=0)

DATASET OF A GLOBAL FIT

- Standard PDFs fits rely on NLO and NNLO calculations of coefficient functions and evolution
- current datasets span several
 order of magnitude in Q² and x

QUESTIONS THAT COME TO MIND


Do we trust FO everywhere?

Do we see evidence of all-order effects in the data?

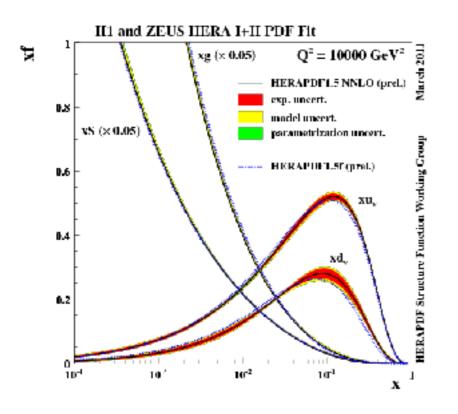
Is it ok to use standard PDFs with resummed calculation?

THRESHOLD (LARGE-X) RESUMMATION

PRODUCTION AT THRESHOLD

$$LO: Q^2 = \hat{s}$$

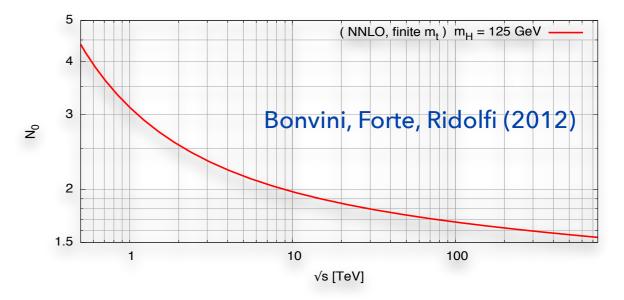
beyond $LO: Q^2 = z\hat{s}$


 absolute threshold: the initialstate energy is just enough to produce the final state with invariant mass Q

$$x = \frac{Q^2}{s} \to 1$$

 emissions forced to be soft, leading to log-enhanced contributions order-by-order in perturbation theory

$$C(z, \alpha_s) \sim \sigma_0 \sum_{\substack{n=1 \ k=-1}}^{2n-1} \alpha_s^n \left[\frac{\ln^k (1-z)}{1-z} \right]$$


WHY BOTHER WITH THRESHOLD AT THE LHC?

Gluon PDF shows a steep increase at low x

 $\hat{s} = x_1 x_2 s$

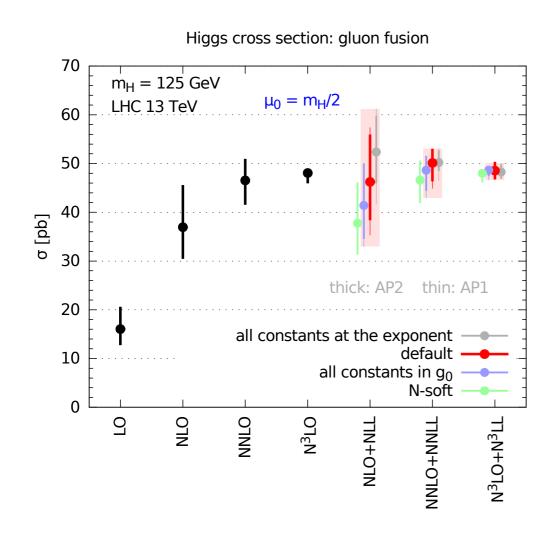
- region of partonic threshold is enhanced in the convolution
- more precise argument in Mellin space
- a saddle-point approximation indicates the region that gives the bulk of the contribution to the inverse Mellin integral
- this region turns out to be fairly narrow around the (real) saddle-point

THRESHOLD RESUMMATION

- momentum space: distributional terms for $z \rightarrow 1$
- moment space: terms that do not vanish at large N

$$\begin{split} C_{\rm res}(N,\alpha_s) &= \bar{g}_0\left(\alpha_s,\mu_{\rm F}^2\right) \exp \bar{\mathcal{S}}(\alpha_s,N),\\ \bar{\mathcal{S}}(\alpha_s,N) &= \int_0^1 dz \, \frac{z^{N-1} - 1}{1 - z} \left(\int_{\mu_{\rm F}^2}^{m_{\rm H}^2 \frac{(1-z)^2}{z}} \frac{d\mu^2}{\mu^2} 2A\left(\alpha_s(\mu^2)\right) + D\left(\alpha_s([1-z]^2 m_{\rm H}^2)\right) \right),\\ & \sim \end{split}$$

 $\bar{g}_0(\alpha_s, \mu_{\rm F}^2) = 1 + \sum_{k=1}^{\infty} \bar{g}_{0,k}(\mu_{\rm F}^2) \alpha_s^k, \quad \text{Anastasiou et al. (2014)}$


$$A(\alpha_s) = \sum_{k=1}^{\infty} A_k \alpha_s^k, \qquad D(\alpha_s) = \sum_{k=1}^{\infty} D_k \alpha_s^k,$$

Catani *et al.* (2002); Moch, Vogt (2005); Laenen, Magnea (2005) [...]

- constants can go in the exponent of in front of it
- state of the art N³LL (but the 4-loop cusp)
- next-to-eikonal can be important (e.g. (1-z)²/z)

Laenen *et al.* (2015, 2016); Larkoski, Neill, Stewart (2015)

AN EXAMPLE: HIGGS IN GLUON FUSION

N³LO: Anastasiou et al. (2015);

N³LL: Bonvini, SM (2014); Bonvini, SM, Muselli, Rottoli (2016);

- resummed (and matched) crosssection converges faster than pure FO
- resummation is perturbative, i.e. captures the effect of the first few orders, so that N³LO+N³LL~N³LO
- it provides further handles to estimate uncertainty from missing higher orders (e.g. subleading logs)

order	σ [pb]	
N ³ LO	$48.1^{+0.1}_{-1.8}$	scale variation
$N^{3}LO$	48.1 ± 2.0	$\overline{\text{CH}}$ at 95% DoB
$N^{3}LO+N^{3}LL$	48.5 ± 1.9	scale+resummation variations
all-order estimate	48.7	from accelerated fixed-order series
all-order estimate	48.9	from accelerated resummed series

see also Catani et al. (2014); Ahmed et al. (2014/2015); Schmidt and Spira (2015); ... also Becher et al. in SCET;

PDFs AT LARGE X

Observable:

$$\sigma = \sigma_0 C(\alpha_s(\mu)) \otimes f(\mu) \left[\otimes f(\mu) \right]$$

Evolution:

$$\mu^2 \frac{d}{d\mu^2} f(\mu) = P(\alpha_s(\mu)) \otimes f(\mu)$$

- coefficient functions contain large-x logs
- PDF evolution doesn't (in MSbar)

$$P_{gg}(x) \sim \frac{A(\alpha_s)}{(1-x)_+}$$

PDFs AT LARGE X

Observable:

$$\sigma = \sigma_0 C(\alpha_s(\mu)) \otimes f(\mu) \left[\otimes f(\mu) \right]$$
$$\mu^2 \frac{d}{d\mu^2} f(\mu) = P(\alpha_s(\mu)) \otimes f(\mu)$$

Evolution:

Processobservableresummation availableDIS
$$d\sigma/dx/dQ^2$$
 (NC, CC, charm, ...)YESDY Z/γ $d\sigma/dM^2/dY$ YESDY Wdifferential in the lepton kinematicsNO \bar{t} total σ YESetsinclusive $d\sigma/dp_t/dY$ YES/NO

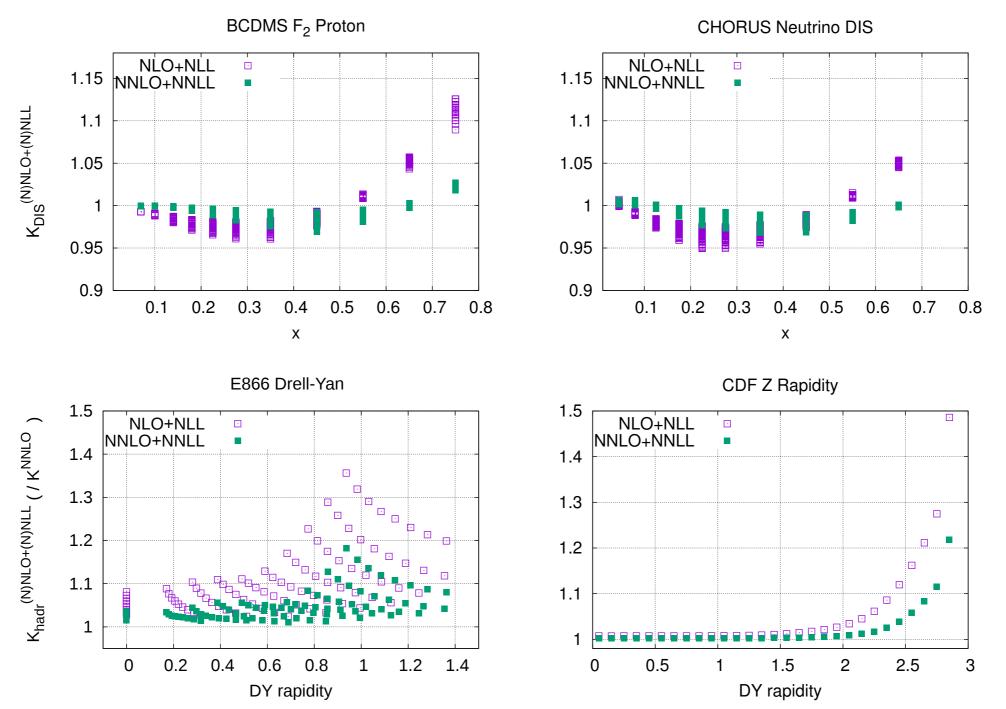
it should be easy to compute

different calculations exist at NLL^(*) but no public implementation

de Florian, Vogelsang (2007, 2013); Kidonakis, Owens (2000); Liu, Moch, Ringer (2017)

DIS, DY available from TROLL (TROLL Resums Only Large-x Logarithms) www.ge.infn.it/~bonvini/troll

 $t\bar{t}$ available from top++

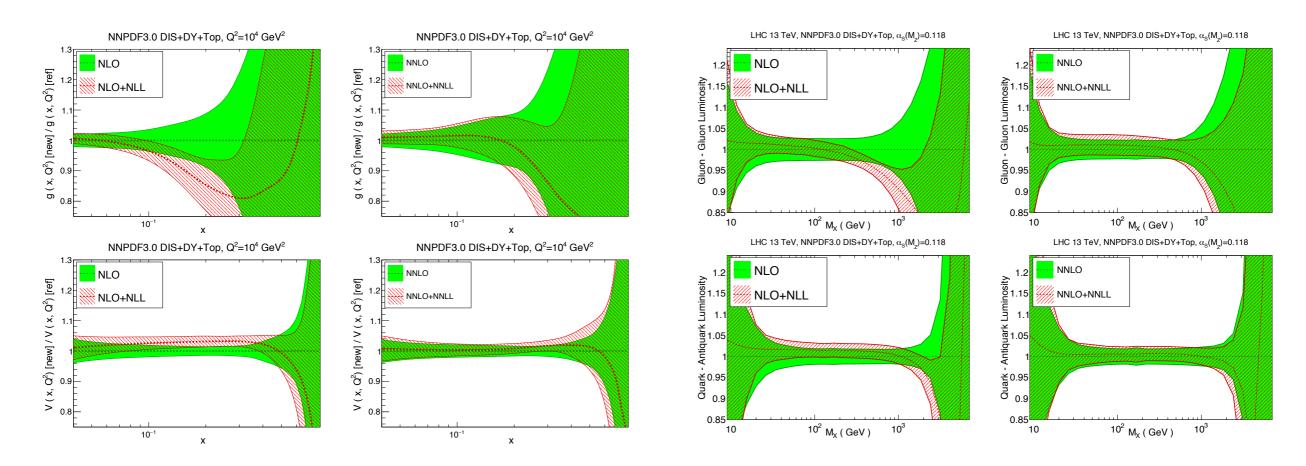

- coefficient functions contain large-x logs
- PDF evolution doesn't (in MSbar)

$$P_{gg}(x) \sim \frac{A(\alpha_s)}{(1-x)_+}$$

- performing a resummed fit is relatively straightforward
- data set is restricted: no jets

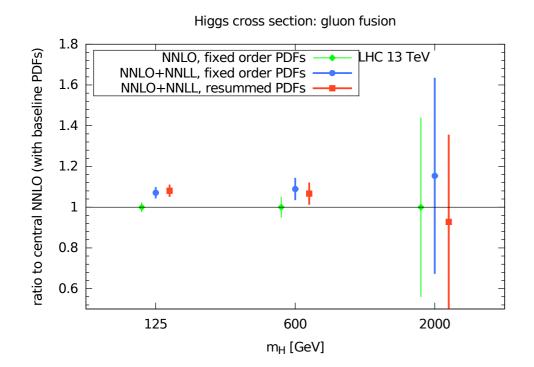
(*)global vs non-global

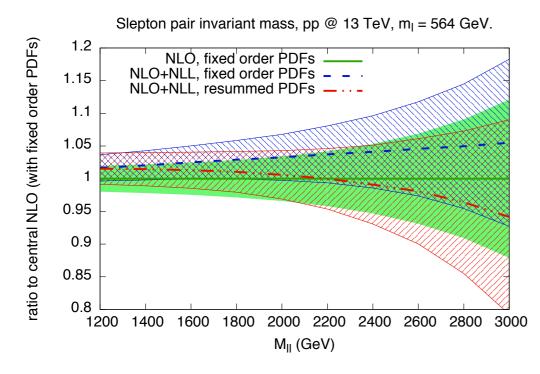
EFFECTS ON THEORY PREDICTIONS

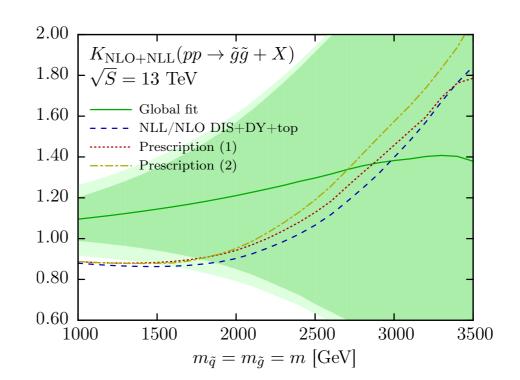

K-factors reduced when NNLO is included: resummation is perturbative

PDFs FIT WITH THRESHOLD RESUMMATION

Experiment	NNPDF3.0 DIS+DY+top				
	NLO	NNLO	NLO+NLL	NNLO+NNLL	
NMC	1.39	1.34	1.36	1.30	
SLAC	1.17	0.91	1.02	0.92	
BCDMS	1.20	1.25	1.23	1.28	
CHORUS	1.13	1.11	1.10	1.09	
NuTeV	0.52	0.52	0.54	0.44	
HERA-I	1.05	1.06	1.06	1.06	
ZEUS HERA-II	1.42	1.46	1.45	1.48	
H1 HERA-II	1.70	1.79	1.70	1.78	
HERA charm	1.26	1.28	1.30	1.28	
DY E866	1.08	1.39	1.68	1.68	
DY E605	0.92	1.14	1.12	1.21	
CDF Z rap	1.21	1.38	1.10	1.33	
D0 Z rap	0.57	0.62	0.67	0.66	
ATLAS Z 2010	0.98	1.21	1.02	1.28	
ATLAS high-mass DY	1.85	1.27	1.59	1.21	
CMS 2D DY 2011	1.22	1.39	1.22	1.41	
LHCb Z rapidity	0.83	1.30	0.51	1.25	
ATLAS CMS top prod	1.23	0.55	0.61	0.40	
Total	1.233	1.264	1.246	1.269	

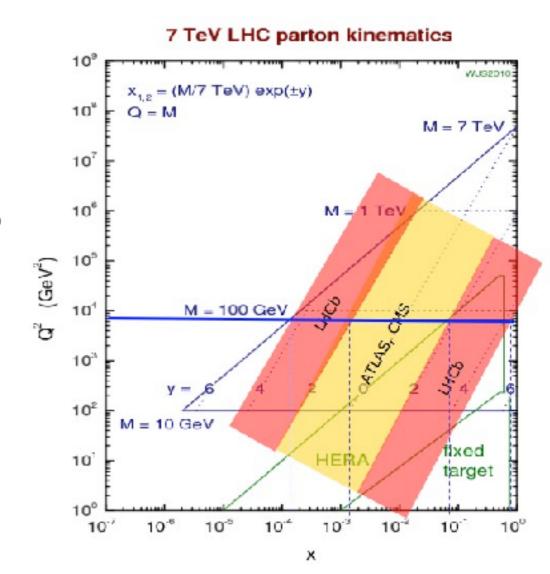

- as expected: visible effects at NLO+NLL are very much reduced at NNLO+NNLL
- χ² slightly worse
 because of DY fixedtarget experiments
- this remains a puzzle


PARTONS WITH THRESHOLD RESUMMATION



- comparison to global fit: larger uncertainties because of reduced dataset
- only "proof-of-concept" studies

PHENOMENOLOGY



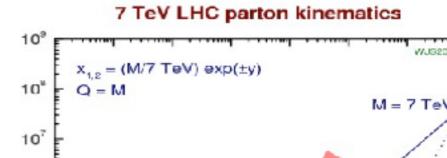
- effects on SM Higgs negligible
- more pronounced for high-mass states, still within PDF errors
- Iarge-x PDFs not (yet) competitive because of missing jet data

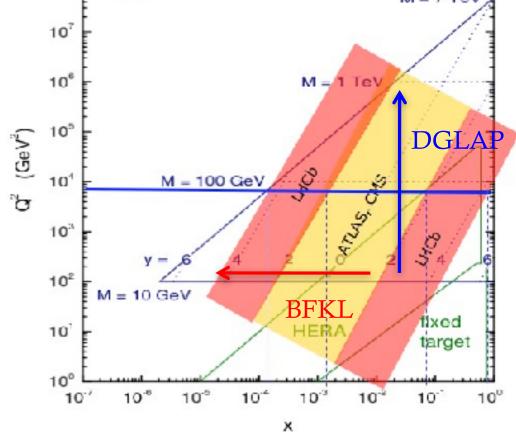
HIGH-ENERGY (SMALL-X) RESUMMATION

LHC KINEMATICS

- PDFs are largely unconstrained at low x
- LHC does probe this region
- Is DGLAP enough to describe this region?
- Do we need to worry about small x? and saturation?

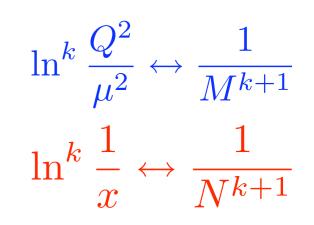
LHC KINEMATICS


- PDFs are largely unconstrained at low x
- LHC does probe this region
- Is DGLAP enough to describe this region?
- Do we need to worry about small x? and saturation?


DGLAP: Q² evolution for N moments of the parton density

 $\frac{d}{d\ln(Q^2/\mu^2)}G(N,Q^2) = \gamma(N,\alpha_s)G(N,Q^2)$

BFKL: small-x evolution for M moments of the parton density


 $\frac{d}{d\ln(1/x)}G(x,M) = \chi(M,\alpha_s)G(x,M)$

Mellin moments:

 $\log s \leftrightarrow \text{poles}$

DGLAP EVOLUTION AT SMALL-X

DGLAP evolution in the singlet sector

$$Q^2 \frac{d}{dQ^2} \begin{pmatrix} f_g \\ f_q \end{pmatrix} = \Gamma \left(N, \alpha_s(Q^2) \right) \begin{pmatrix} f_g \\ f_q \end{pmatrix}, \qquad \Gamma (N, \alpha_s) \equiv \begin{pmatrix} \gamma_{gg} \ \gamma_{gq} \\ \gamma_{qg} \ \gamma_{qq} \end{pmatrix}$$

the gluon splitting functions start at LLx

$$\gamma_{gg} \sim c_1 \frac{\alpha_s}{N} + c_2 \left(\frac{\alpha_s}{N}\right)^2 + \dots$$
$$\gamma_{gq} \sim \frac{C_F}{C_A} \gamma_{gg}$$

$$\gamma_{qq} \sim \alpha_s C_F \qquad \gamma_{qg} \sim \alpha_s T_r$$

while the quarks are NLLx

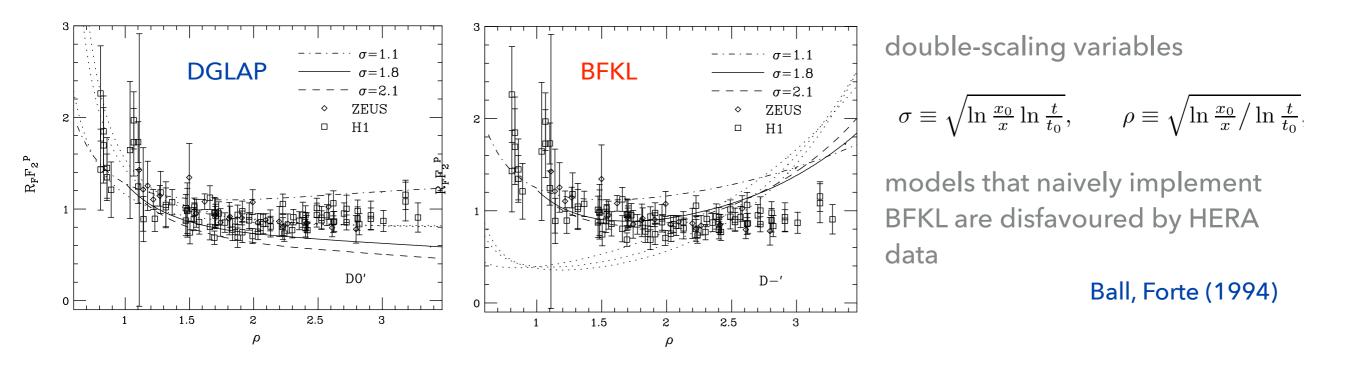
$$\gamma_{qg} \sim \alpha_s d_0 + d_1 \alpha_s \frac{\alpha_s}{N} + c_2 \alpha_s \left(\frac{\alpha_s}{N}\right)^2 + \dots$$
$$\gamma_{qq}^{(\text{PS})} \sim \frac{C_F}{C_A} \left(\gamma_{gg} - \alpha_s d_0\right)$$

FIXED-ORDER CONSIDERATIONS

Note that some of the coefficients can be zero because of accidental cancellations: most notably c₂ and c₃ in MS-like schemes

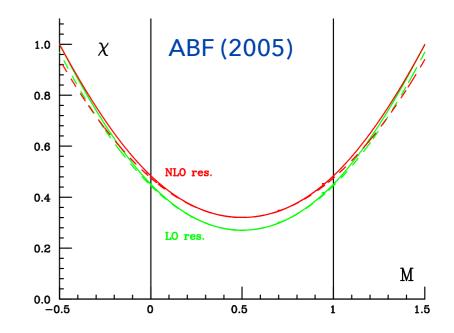
$$\gamma_{gg} \sim c_1 \left(\frac{\alpha_s}{N}\right) + c_2 \left(\frac{\alpha_s}{N}\right)^2 + c_3 \left(\frac{\alpha_s}{N}\right)^3 + c_4 \left(\frac{\alpha_s}{N}\right)^4 + \mathcal{O}(\alpha_s^5)$$

- NNLO is less stable than NLO (subleading logs survive)
- N³LO (calculations underway) is likely to exhibit stronger instabilities


DGLAP-BFLK DUALITY

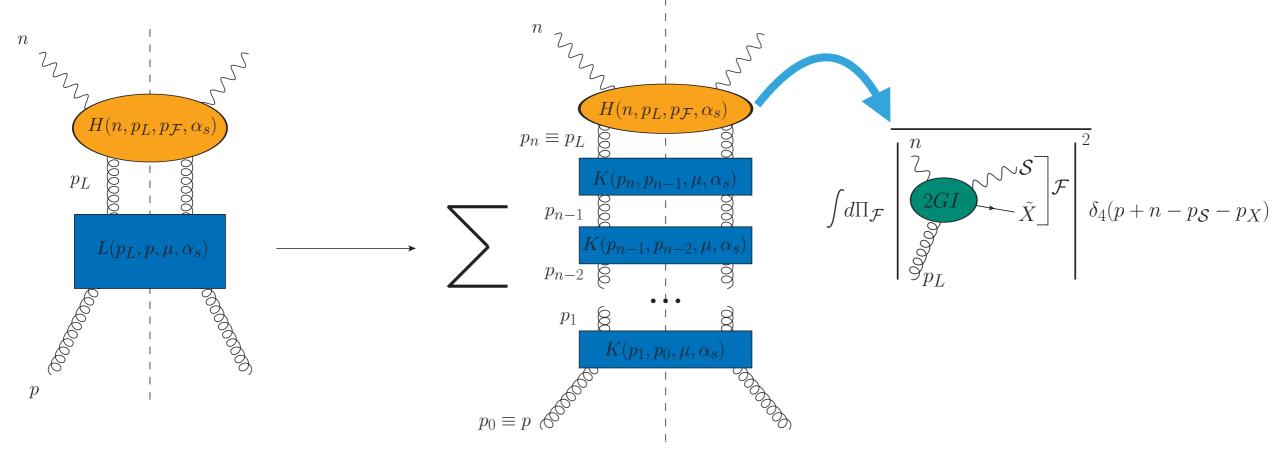
(N)LLx behaviour can be determined from the (N)LO BFKL kernel

Jaroszewicz (1982)


$$G(N,M) = \frac{G_0(N)}{M - \gamma(\alpha_s, N)} = \frac{\bar{G}_0(M)}{N - \chi(\alpha_s, M)} \longrightarrow \begin{array}{l} \chi(\gamma(N, \alpha_s), \alpha_s) = N \\ \gamma(\chi(M, \alpha_s), \alpha_s) = M \end{array}$$

DGLAP and BFKL

however: naive implementation of BFKL leads to results not supported by HERA data (too strong, too soon)


RESUMMATION OF DGLAP EVOLUTION

- Problem studied by different groups in late '90s /early '00s: Altarelli, Ball, Forte; Ciafaloni, Colferai, Salam, Stasto; Thorne, White
- for a comparative review see HERA-LHC Proc. arXiv:0903.3861
- recent progress in SCET Rothstein, Stewart (2016)
- we mostly follow the approach by ABF
- key ingredients:
 - duality between DGLAP and BFKL kernels
 - stable solution of the running coupling BFKL equation (important subleading effects)
 - match to standard DGLAP at large N (x)

COEFFICIENT FUNCTIONS AT SMALL X

- the high-energy behaviour of coefficient function is obtained using k_t-factorisation Catani, Ciafaloni, Hautmann (1991); Collins, Ellis (1991)
- derivation in terms of ladder expansion allowed for its generalisation to differential distributions Caola, Forte, SM (2010); Forte, Muselli (2016); Muselli (2017)

for most processes of interest (DIS, DY) resummation starts at NLLx

RESUMMATION OF COEFFICIENT FUNCTIONS

- naive (i.e. fixed-log counting) resummation has same issues as evolution
- running coupling corrections are crucial
- elegant but complex treatment in Mellin space Ball (2008)
- our approach in a nutshell: resummation in momentum space

High-energy (k_T) factorization:

$$\sigma \propto \int \frac{dz}{z} \int d^2 \mathbf{k} \ \hat{\sigma}_g \left(\frac{x}{z}, \frac{Q^2}{\mathbf{k}^2}, \alpha_s(Q^2) \right) \mathcal{F}_g(z, \mathbf{k}) \qquad \begin{cases} \mathcal{F}_g(x, \mathbf{k}) : \text{unintegrated PDF} \\ \hat{\sigma}_g \left(z, \frac{Q^2}{\mathbf{k}^2}, \alpha_s \right) : \text{off-shell xs} \end{cases}$$

Defining

$$\mathcal{F}_g(N, \boldsymbol{k}) = U\left(N, \frac{\boldsymbol{k}^2}{\mu^2}\right) f_g(N, \mu^2)$$

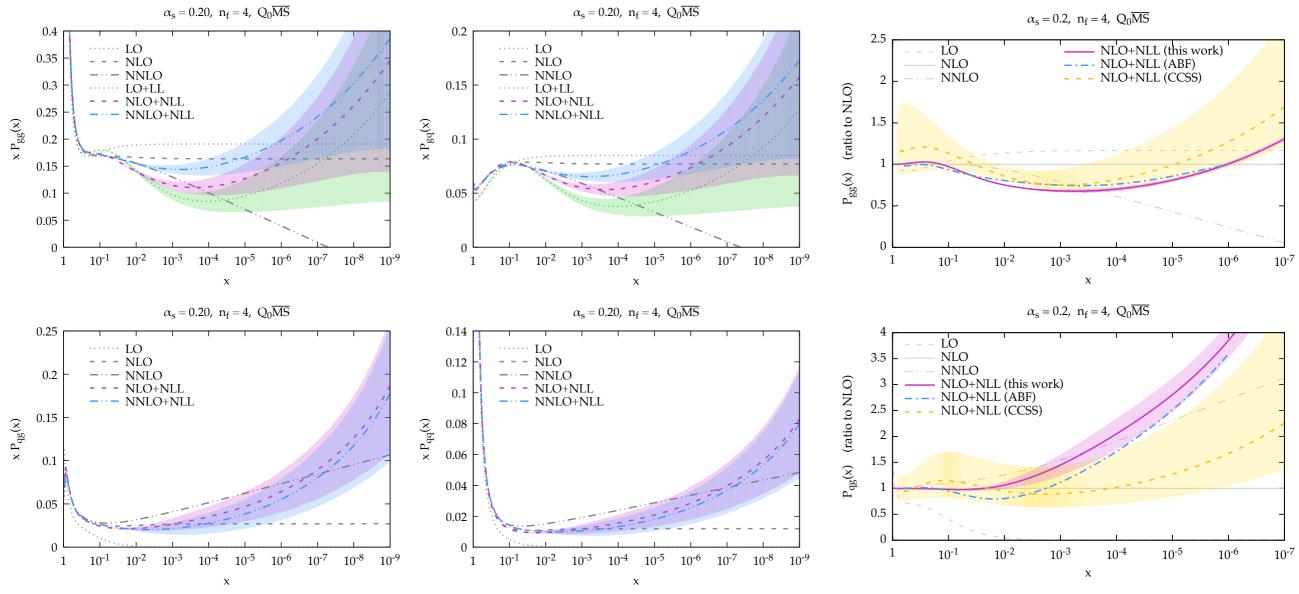
we get

$$C_g(N,\alpha_s) = \int d^2 \boldsymbol{k} \, \hat{\sigma}_g\left(N, \frac{Q^2}{\boldsymbol{k}^2}, \alpha_s\right) U\left(N, \frac{\boldsymbol{k}^2}{\mu^2}\right)$$

At LLx accuracy, U has a simple form, in terms of small-x resummed anom dim γ

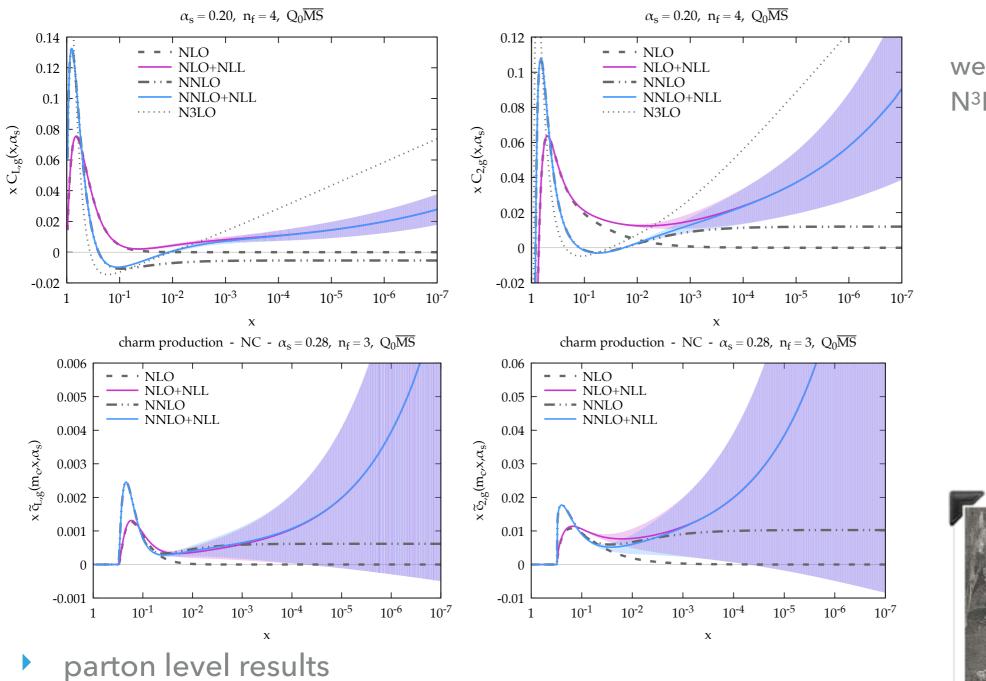
$$U\left(N,\frac{\boldsymbol{k}^2}{\mu^2}\right) \approx \boldsymbol{k}^2 \frac{d}{d\boldsymbol{k}^2} \exp \int_{\mu^2}^{\boldsymbol{k}^2} \frac{d\nu^2}{\nu^2} \gamma(N,\alpha_s(\nu^2))$$

 until recent: very little phenomenology because a comprehensive code was missing


HIGH ENERGY LARGE LOGARITHMS

- Public code that computes resummed splitting functions and perturbative coefficient functions
- HELL-x: pheno tool with pre-tabulated results, interfaced with evolution code APFEL
- in current HELL 2.0 version
 - DIS (both NC and CC)
 - heavy-quark matching conditions
- HELL 3.0 will appear soon (Higgs, DY)

https://www.ge.infn.it/~bonvini/hell/


RESULTS FROM HELL: SPLITTING FUNCTIONS

resummation matched up to NNLO

- uncertainty bands obtained by varying subleading corrections
- quark splitting functions under less control (they start at NLL)

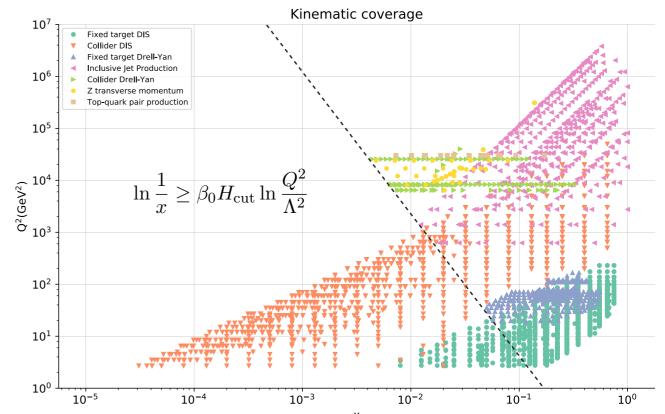
RESULTS FROM HELL: DIS COEFFICIENT FUNCTIONS

large theoretical uncertainty (they start at NLL)

we can already see N³LO instabilities

A FIT WITH SMALL-X RESUMMATION: THE DATASET

- exploit NNPDF state-of-art technology to perform fits with small-x resummation
- for DIS with have a consistent implementation of small-x resummation (both evolution and coefficient functions)
- similar dataset as standard NNLO analysis (NNPDF 3.1)
- lower the initial scale of the fit to $Q_0=1.64$ GeV to include an extra bin of the HERA data ($Q^2=2.7$ GeV²) Experiment N_{dat}
- what about hadronic data?

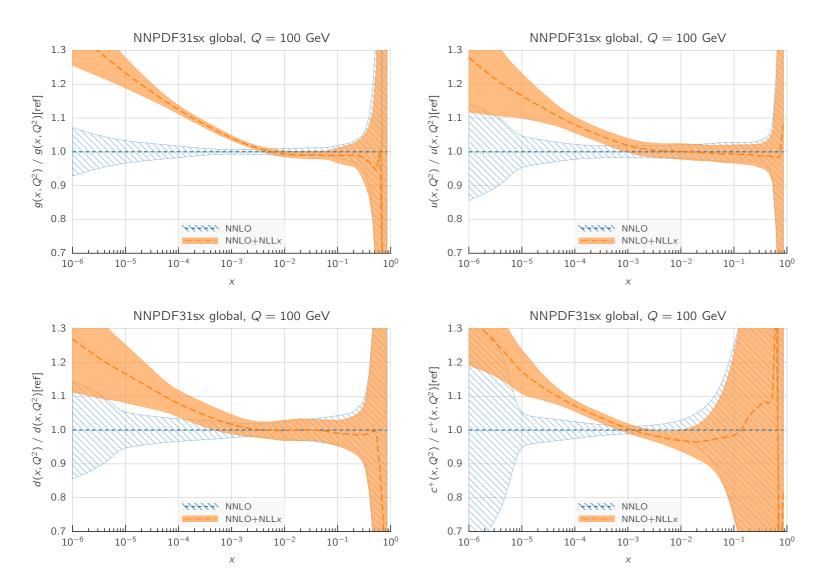

Experiment	$N_{\rm dat}$
NMC	367
SLAC	80
BCDMS	581
CHORUS	886
NuTeV dimuon	79
HERA I+II incl. NC	1081
HERA I+II incl. CC	81
HERA $\sigma_c^{\rm NC}$	47
HERA F_2^b	29
Total	3231

THE ISSUE WITH HADRONIC DATA

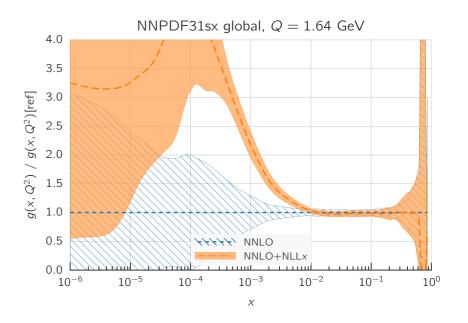
- resummation for coefficient functions in pp collisions is known but not yet implemented in HELL
- resummation only included in the evolution
- to avoid biases we cut away hadronic low-x data (mostly LHCb DY)
- we discard points for which (based on LO kinematics)

$$\alpha_s(Q^2) \ln \frac{1}{x} \ge H_{\text{cut}}$$

- the smaller *H*_{cut}, the tighter the cut
- we find H_{cut}=0.6 to be a good compromise
- we keep ~70% of hadronic data

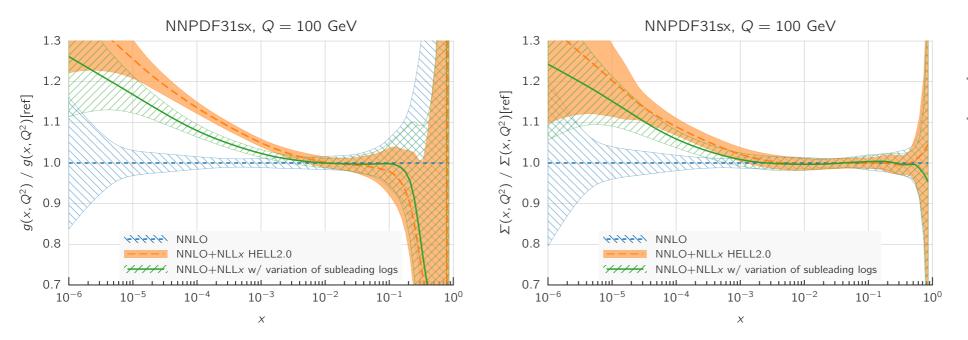

FIT RESULTS

		$\chi^2/N_{ m dat}$		$\chi^2/N_{ m dat}$		$\Delta \chi^2$
	NLO	NLO+NLLx		NNLO	NNLO+NLLx	
NMC	1.35	1.35	+1	1.30	1.33	+9
SLAC	1.16	1.14	-1	0.92	0.95	+2
BCDMS	1.13	1.15	+12	1.18	1.18	+3
CHORUS	1.07	1.10	+20	1.07	1.07	-2
NuTeV dimuon	0.90	0.84	-5	0.97	0.88	-7
HERA I+II incl. NC	1.12	1.12	-2	1.17	1.11	-62
HERA I+II incl. CC	1.24	1.24	-	1.25	1.24	-1
HERA $\sigma_c^{ m NC}$	1.21	1.19	-1	2.33	1.14	-56
HERA F_2^b	1.07	1.16	+3	1.11	1.17	+2
DY E866 $\sigma_{\rm DY}^d/\sigma_{\rm DY}^p$	0.37	0.37	-	0.32	0.30	-
DY E886 σ^p	1.06	1.10	+3	1.31	1.32	-
DY E605 σ^p	0.89	0.92	+3	1.10	1.10	-
CDF Z rap	1.28	1.30	-	1.24	1.23	-
CDF Run II k_t jets	0.89	0.87	-2	0.85	0.80	-4
D0 Z rap	0.54	0.53	-	0.54	0.53	-
D0 $W \to e\nu$ asy	1.45	1.47	-	3.00	3.10	+1
D0 $W \to \mu \nu$ asy	1.46	1.42	-	1.59	1.56	-
ATLAS total	1.18	1.16	-7	0.99	0.98	-2
ATLAS W, Z 7 TeV 2010	1.52	1.47	-	1.36	1.21	-1
ATLAS HM DY 7 TeV	2.02	1.99	-	1.70	1.70	-
ATLAS W, Z 7 TeV 2011	3.80	3.73	-1	1.43	1.29	-1
ATLAS jets 2010 7 TeV	0.92	0.87	-4	0.86	0.83	-2
ATLAS jets 2.76 TeV	1.07	0.96	-6	0.96	0.96	-
ATLAS jets 2011 7 TeV	1.17	1.18	-	1.10	1.09	-1
ATLAS $Z p_T$ 8 TeV (p_T^{ll}, M_{ll})	1.21	1.24	+2	0.94	0.98	+2
ATLAS $Z p_T$ 8 TeV (p_T^{ll}, y_{ll})	3.89	4.26	+2	0.79	1.07	+2
ATLAS σ_{tt}^{tot}	2.11	2.79	+2	0.85	1.15	+1
ATLAS $t\bar{t}$ rap	1.48	1.49	-	1.61	1.64	-
CMS total	0.97	0.92	-13	0.86	0.85	-3
CMS Drell-Yan 2D 2011	0.77	0.77	-	0.58	0.57	-
CMS jets 7 TeV 2011	0.88	0.82	-9	0.84	0.81	-3
CMS jets 2.76 TeV	1.07	0.98	-7	1.00	1.00	-
CMS $Z p_T$ 8 TeV (p_T^{ll}, y_{ll})	1.49	1.57	+1	0.73	0.77	-
CMS σ_{tt}^{tot}	0.74	1.28	+2	0.23	0.24	-
CMS $t\bar{t}$ rap	1.16	1.19	-	1.08	1.10	-
Total	1.117	1.120	+11	1.130	1.100	-121


- the quality of NLO+NLLx and NLO fits is comparable
- it's expected because the two theories are rather similar
- situation changes
 dramatically at NNLO
- NNLO+NLLx provides the best fit
- the bulk of the improvement comes from HERA data

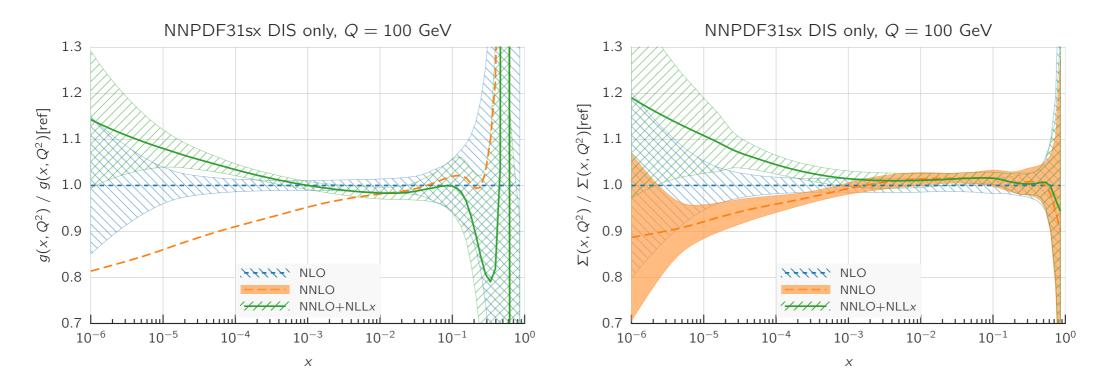
PARTON DENSITIES WITH SMALL-X RESUMMATION

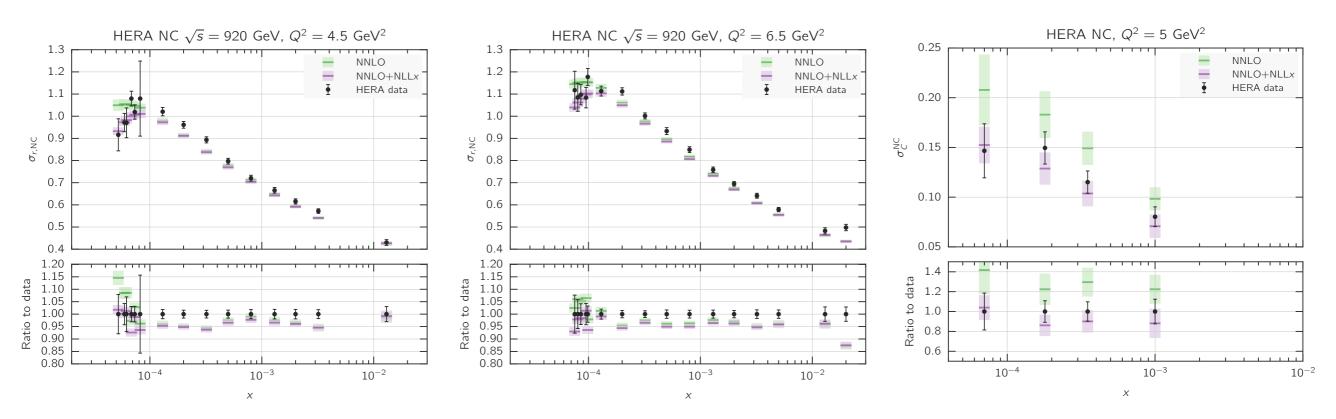
- resulting PDFs show interesting features
- agreement at large x but they're much steeper at low x

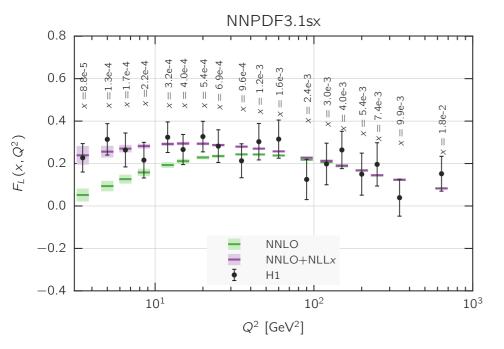


how much is the initial condition modified?

IMPACT OF THEORETICAL UNCERTAINTIES

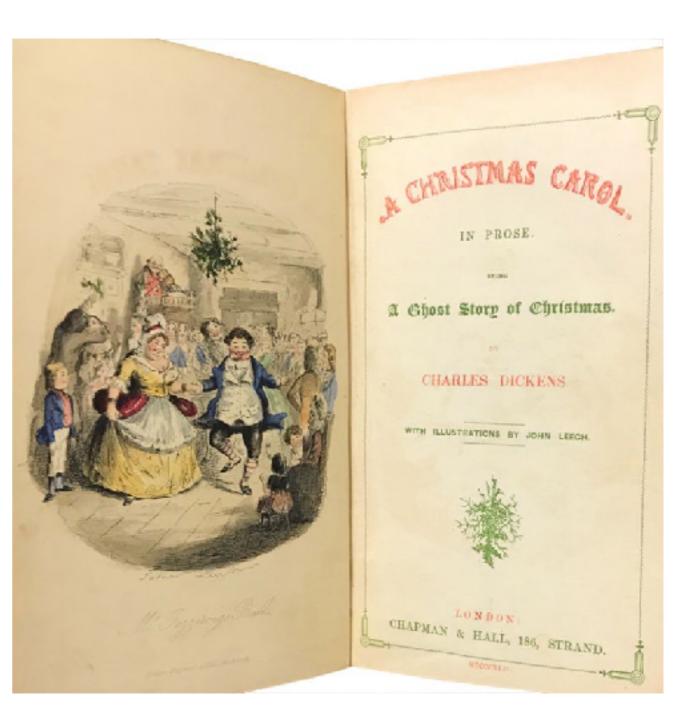

- we have seen that quark splitting functions and coefficient functions suffer from large theoretical uncertainties
- the inclusion of theory errors in PDF fit is currently an active area of research
- we can use a setting that varies from the standard one beyond NLLx
- a DIS-only study shows that the fit quality is unchanged
- qualitative behaviour on solid grounds, however quantitative results do change


this shows the need for NNLL*x* resummation (at least in the quark sector)

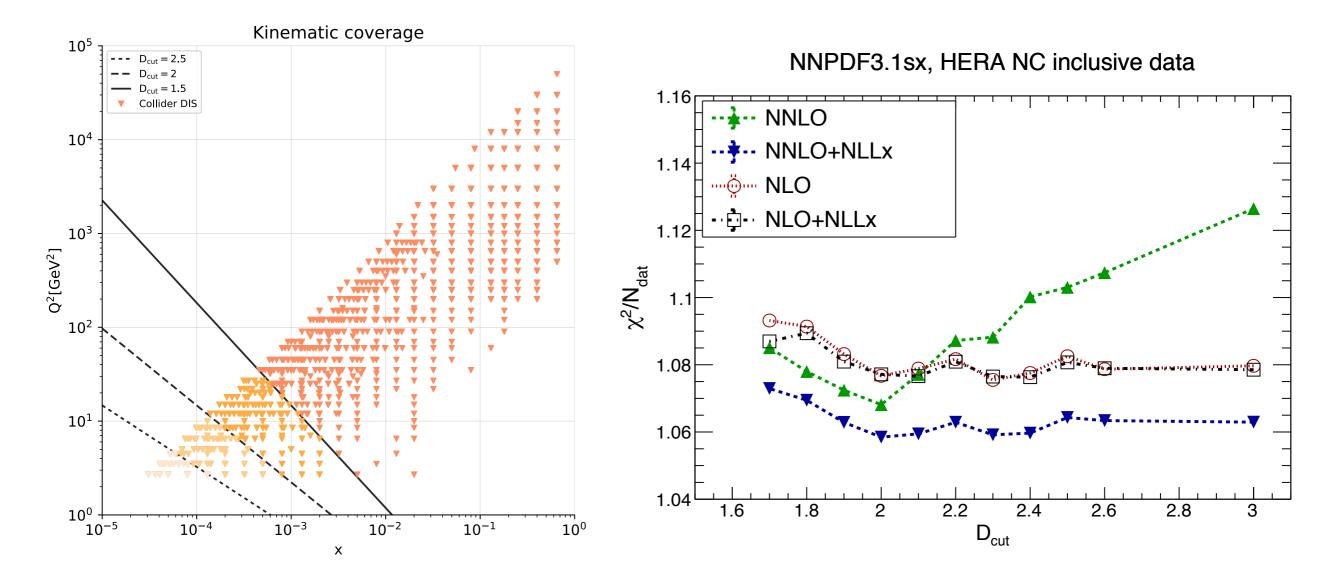

PERTURBATIVE STABILITY

- NNLO and NNLO+NLLx differ quite dramatically
- one could question the reliability of the resummed procedure
- what gives us confidence we're not talking rubbish?
- resummation cures perturbative instability of NNLO

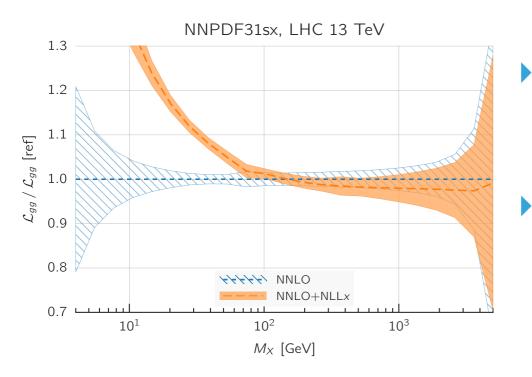
HERA STRUCTURE FUNCTIONS



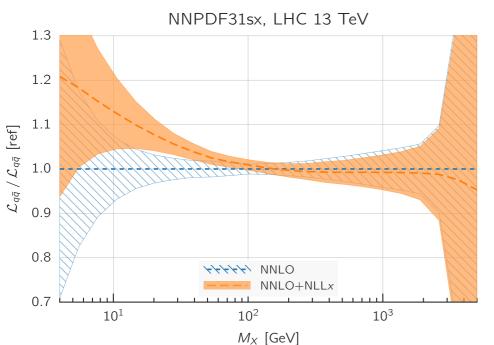
- the improved description of DIS structure functions is clearly visible
- this is particularly true for *F*_L where resummation effects starts at its LO

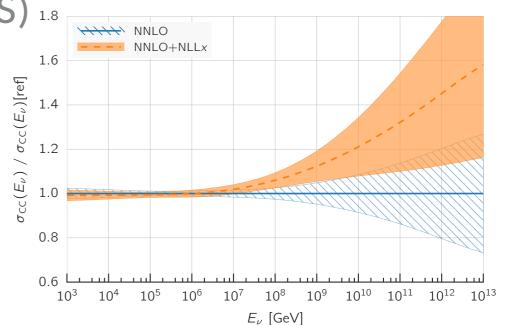

A DICKENSIAN TAKE ON THE RESULTS

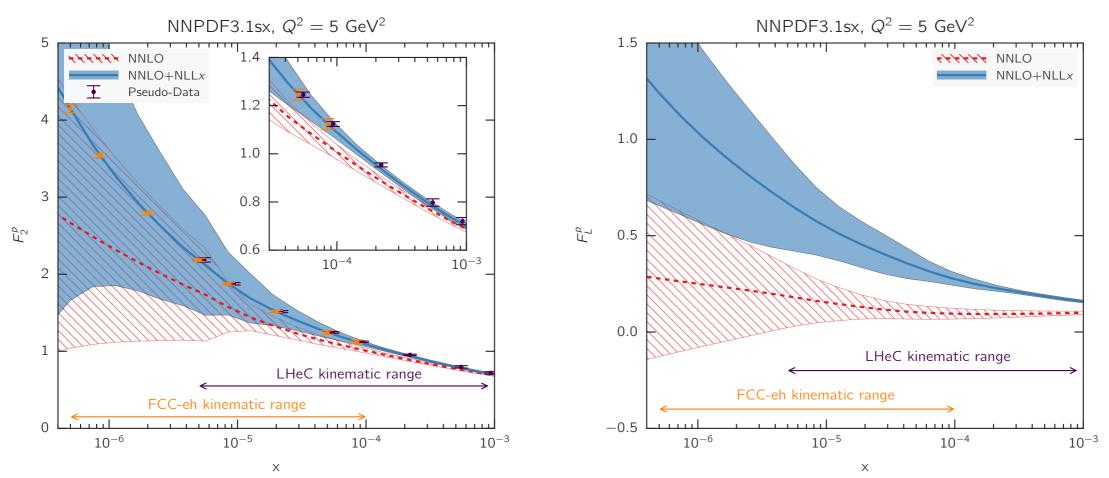
- BFKL is a beautiful but tough framework
- QCD at low *x* is hard work
- it seems appropriate to humbly borrow Charles
 Dickens images to describe it
- as in the novel: in the end, we'll do better (physics)



BFKL: THE GHOST OF CHRISTMAS PAST


- How does the fit-quality change if we include data at smaller and smaller x? $lpha_s(Q^2) \ln rac{1}{x} \geq D_{
 m cut}$
- similar strategy as for hadronic data


BFKL: THE GHOST OF CHRISTMAS PRESENT

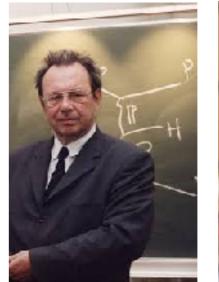

- to investigate LHC phenomenology we need resummed coefficient functions
- we can have a look at parton luminosities: qqbar doesn't change much but the change in gg is striking!

- consistent phenomenology for cosmic ray neutrinos (CC-DIS) 1.8
- unique "lab" for low-x physics

BFKL: THE GHOST OF CHRISTMAS YET-TO-COME

small-x physics will be crucial at future circular colliders

- e (60 GeV) p (7 TeV or 50 TeV) collisions
- to gauge the impact: fits including (resummed) pseudo-data


	$N_{\rm dat}$	$\chi^2/N_{ m dat}$		$\Delta \chi^2$
		NNLO	NNLO+NLL <i>x</i>	
HERA I+II incl. NC	922	1.22	1.07	-138
LHeC incl. NC	148	1.71	1.22	-73
FCC-eh incl. NC	98	2.72	1.34	-135
Total	1168	1.407	1.110	-346

CONCLUSIONS & OUTLOOK

- Better determinations of PDFs require both data and theory
- resummation offers a complementary direction
- Iarge-x resummed fits performed with restrict data set
- small-x resummed fit shows evidence of BFKL dynamics in HERa inclusive data
- towards truly global resummed fits:
 - Higgs and DY at small x are the next items on the agenda
 - then jets, both at large- and small-x
- Theory uncertainties ??? (I leave this one to real PDFs experts)

THANK YOU!

if we have seen further it is only by standing on the shoulders of giants

