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• The need for theory precision is twofold 

• As a precision machine, the LHC is providing us with %-accurate 
measurements of SM parameters/dynamics (couplings, PDFs, masses,
…). A full exploitation of this data requires a deep understanding of 
the theory  

• Precision can allow for indirect constraints on new physics (NP) 
through mild distortions in kinematic distributions 

• Sensitivity is often improved by looking at exclusive regions of 
phase space where underlying QCD activity needs to be minimised 
(e.g. boosted kinematics, vetoes, …) 

• A careful assessment of the SM background is essential in most 
cases. This already reaches the few-percent level in some scenarios
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The quest for precision at the LHC



‣ Fixed-order calculations of radiative corrections are formulated in a well established way 
(technically very challenging, but well posed problem): 

‣ compute amplitudes at a given order 

‣ provide an effective subtraction of IRC divergences 

‣ compute any IRC-safe observable 

‣ All-order calculations are still at an earlier stage of evolution 

‣ Each different observable has its own type of sensitivity to IRC physics, it is hard to 
formulate a general method that works for all at a generic perturbative order 

‣ Higher-order resummations are therefore often formulated in an observable-dependent way, 
for few well-behaved collider observables 

Fixed-order vs. All-order
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‣ In the logarithmic regime, Born amplitudes receive radiative corrections from virtual diagrams 
(unconstrained), and soft/collinear real radiation 

‣ The QCD amplitude (almost always) factorises in these kinematic limits 

‣ This is a necessary condition to formulate an all-order perturbative calculation (otherwise 
new structure would arise at each new order)

Path towards resummation: factorisation
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Factorisation of amplitudes in the IRC
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• Consider a IRC observable                               in 
the Born-like limit  

• In this limit radiative corrections are described 
exclusively by virtual corrections, and collinear 
and/or soft real emissions (singular limit) — QCD 
squared amplitudes factorise in these regimes 
w.r.t. the Born, up to regular corrections 

• Different observables are sensitive to different 
singular modes which determine the logarithmic 
structure of the perturbative expansion (e.g. (non) 
global, hard-collinear logarithms, …) 

V = V ({p̃}, k1, ..., kn)  1

V ! 0

colourless system



Two-emitter processes
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H({sij})

S
• The strong angular separation between different 

modes ensures they evolve independently at late 
times after the collision 

• The structure of the coherent soft radiation at large 
angles (interference between emitters) gets 
increasingly complex with the number of emitting 
legs



Non-Global observables
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H({sij})

S
• The strong angular separation between different 

modes ensures they evolve independently at late 
times after the collision 

• The structure of the coherent soft radiation at large 
angles (interference between emitters) gets 
increasingly complex with the number of emitting 
legs 

• For non-global observables one is always sensitive 
to the full evolution of the soft radiation outside of 
the resolved phase-space region 

• Both soft and collinear modes are present in the 
general case 

• Collinear modes can be absent

[Dasgupta,	Salam	’01;	Banfi,	Marchesini,	Smye	’02]
[Caron-Huot	’15-‘16;	Larkoski,	Moult,	Neill	’15;	Becher,	Neubert,	Rothen,	Shao	’15-‘16]



Two-emitter processes
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H({sij})

S
• The strong angular separation between different 

modes ensures they evolve independently at late 
times after the collision 

• The structure of the coherent soft radiation at large 
angles (interference between emitters) gets 
increasingly complex with the number of emitting 
legs 

• For continuously global observables in processes 
with two emitters, colour coherence forces the 
effect of soft modes exchanged with large angles to 
vanish 

• Only collinear (soft/hard) modes effectively 
remain 

• Soft modes can be absent in specific cases



‣ Factorisation of the amplitude is not enough as the all-order radiation is tangled by the 
observable 

‣ In order to perform an all-order calculation, one needs to break the observable too into hard, 
soft and collinear pieces. This can be done for some observables which treat the radiation rather 
inclusively 

‣ Resummation can be performed, e.g., by formulating a soft-collinear EFT of the singular 
modes (SCET)

Factorisation of the observable
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‣ Factorisation is a powerful tool, but limited to observables that have a simple analytic 
expression in the relevant limits or do not mix soft and collinear radiation (e.g. jet rates) 

‣ Ultimately, we want to use the modern knowledge of IRC dynamics to make more accurate 
generators. At present a general framework to assess the accuracy of Parton Showers is missing 

‣ It is of primary importance to formulate a link between higher-order resummation and PS 

‣ Can we devise a formulation without a factorisation formula ? 

‣ recursive IRC safety: simple set of criteria for the observable that allows one to formulate 
the resummation at NLL for global observables without the need for an explicit 
factorisation. 

‣ Most of modern global observables fall into this category. Exceptions exist: e.g. rIRC unsafe 
observables (e.g. old JADE and Geneva algorithms), Sudakov-safe observables. No general 
structure beyond LL for these is known yet 

‣ The method can be reformulated and systematically extended at higher logarithmic orders

Eluding observable factorisation
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[Banfi, McAslan, PM, Zanderighi ’14-’16] 
[PM, Re, Torrielli ’16] 
[Bizon, PM, Re, Rottoli, Torrielli ’17]

[Banfi, Salam, Zanderighi ’01-’04]



• Transverse observables in colour-singlet production offer a clean experimental and theoretical 
environment for precision physics: 

• SM measurements (e.g. W, Z, photon,…): parton distributions, strong coupling, W mass,… 

• BSM measurements/constraints (e.g. Higgs): light/heavy NP, Yukawa couplings,… 

• Of this class, the family of inclusive observables probes directly the kinematics of the colour 
singlet: 

• sensitive to non-perturbative effects (hadronisation, intrinsic kt) only through transverse 
recoil 

• very little/no sensitivity to multi-parton interactions 

• measured precisely at experiments 

• Experimental uncertainty is already at the % level (or less) in some cases (e.g. Z production). 
Perturbation theory must be pushed to its limits

A case study: transverse observables
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e.g. Z/H at small transverse momentum
• Study of small-pt region received a lot of attention in collider literature. Theoretically, it offers 

a clean environment to test/calibrate exclusive generators against more accurate predictions. 
Experimentally, shape is sensitive to light-quark Yukawa couplings 

• Theoretically interesting observable. Two mechanisms compete in the            limit 

• Sudakov (exponential) suppression when  

• Azimuthal cancellations (power suppression, dominant) when  

• Standard solution obtained in impact-parameter space. Information on the radiation entirely 
lost 

• Coefficient functions and anomalous dimensions known up to N3LL, except for four-loop cusp

pt ! 0

kti ⇠ pt

kti � pt

[Parisi,	Petronzio	’79]	
[Collins	et	al.	’85]	
[Bozzi	et	al.	’05] 

[Becher	et	al.	‘10+’12]

[Catani,	Grazzini	’11][Catani	et	al.	‘12][Gehrmann,	Luebbert,	Yang	‘14]
[De	Florian,	Grazzini	’01][Becher,	Neubert	‘10]

[Davies,	Stirling	‘84]
[Vladimirov	’16]	[Li,	Zhu	’16]	
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[Parisi,	Petronzio	’79]	
[Collins	et	al.	’85]	
[Bozzi	et	al.	’05] 

[Becher	et	al.	‘10+’12]

Is it possible to obtain a more exclusive solution in 
momentum space ? 

[Catani,	Grazzini	’11][Catani	et	al.	‘12][Gehrmann,	Luebbert,	Yang	‘14]
[De	Florian,	Grazzini	’01][Becher,	Neubert	‘10]

[Davies,	Stirling	‘84]
[Vladimirov	’16]	[Li,	Zhu	’16]	

See	also	work	in	[Ebert,	Tackmann	’16][Kang,	Lee,	Vaidya	’17]



• Write all-order cross section as (                                                      )
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Direct space: virtual corrections
V ({p̃}, k1, . . . , kn) = |~kt1 + · · ·+ ~ktn|

All-order	form	factor
e.g.	[Dixon,	Magnea,	Sterman	’08]

V(�B) =



• Write all-order cross section as (                                                      ) 

• Logarithmic counting: we need a logarithmic hierarchy in the squared amplitudes 
(resummation means iteration of lower-order amplitudes)

15
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Real	emissions

+ + . . .

+ +

+ . . .



• Write all-order cross section as (                                                      ) 

• Logarithmic counting: we need a logarithmic hierarchy in the squared amplitudes 
(resummation means iteration of lower-order amplitudes)

15

Direct space: real radiation
V ({p̃}, k1, . . . , kn) = |~kt1 + · · ·+ ~ktn|

Real	emissions

+ + . . .

+ +

+ . . .

| {z }
↵sL2



• Write all-order cross section as (                                                      ) 

• Logarithmic counting: we need a logarithmic hierarchy in the squared amplitudes 
(resummation means iteration of lower-order amplitudes)

15

Direct space: real radiation
V ({p̃}, k1, . . . , kn) = |~kt1 + · · ·+ ~ktn|

Real	emissions

+ + . . .

+ +

+ . . .

| {z }
↵2

sL
4

| {z }
↵sL2



• Write all-order cross section as (                                                      ) 

• Logarithmic counting: we need a logarithmic hierarchy in the squared amplitudes 
(resummation means iteration of lower-order amplitudes)

15

Direct space: real radiation
V ({p̃}, k1, . . . , kn) = |~kt1 + · · ·+ ~ktn|

Real	emissions

+ + . . .

+ +

+ . . .

| {z }
↵2

sL
4

| {z }
↵sL2

| {z }
+↵2

sL
2↵2

sL
3

this LL is absorbed in the resummation of |M(k)|2



• Write all-order cross section as (                                                      ) 

• Recast all-order squared ME for n real emissions as iteration of correlated blocks 

• Scaling of the observable in the presence of radiation must preserve the above hierarchy

V ({p̃}, k1, . . . , kn) = |~kt1 + · · ·+ ~ktn|

Real	emissions

e.g.	soft	radiation	(analogous	considerations	for	hard-collinear)
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These requirements can be 
translated into simple scaling 
properties for the observables, 
known as recursive IRC safety

Direct space: real radiation
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• Subtraction of the IRC poles between                                              and          : 

• introduce a phase-space resolution scale (slicing parameter) 

• real correlated blocks with total transverse momentum          (unresolved) do not 
modify the observable, and can be ignored in the measurement function 

• compute unresolved reals and virtuals analytically in D dimensions (much easier 
than full observable) 

• compute resolved (reals only) in 4 dim. with           (MC events !)

V(�B)
1X

n=0

Z nY

i=1

[dki]|M(p̃1, p̃2, k1, . . . , kn)|2

All-order subtraction of IRC singularities

✏ ! 0

DGLAP	anomalous	dims
RGE	evolution	of		
coeff.	functions

kti < ✏kt1

Q0 = ✏kt1
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integral	of	single	
inclusive	block.
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Monte Carlo formulation

...

. . .
. . . ...

...
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• This is, essentially, a non-fully-exclusive parton shower with higher logarithmic 
accuracy



• One great simplification: choice of the resolution variable such that correlated 
blocks entering at          in the unresolved radiation only contribute at             in 
the resolved case 

• i.e. we can expand out the cutoff dependence and retain in the Radiator only 
the terms necessary to cancel the singularities in the resolved radiation

Monte Carlo formulation

...

. . .
. . . ...

...
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• One great simplification: choice of the resolution variable such that correlated 
blocks entering at          in the unresolved radiation only contribute at             in 
the resolved case 

• i.e. we can expand out the cutoff dependence and retain in the Radiator only 
the terms necessary to cancel the singularities in the resolved radiation 

• Corrections beyond NLL are obtained as follows 

• Add subleading effects in the Sudakov radiator and constants 

• Correct a fixed number of the NLL resolved emissions: 

• only one at NNLL 

• two at N3LL 
• …

Monte Carlo formulation
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‣ Implementation in a MC code (RadISH) up to N3LL
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An example: Higgs pT at N3LL+NNLO

Coefficient	functions	and	anomalous	dimensions	from:	
[Catani,	Grazzini	’11;	Gehrmann	et	al.	‘14]	 

[de	Florian,	Grazzini	’01]	[Becher,	Neubert	’10]	[Li,	Zhu	’16]



‣ Implementation in a MC code (RadISH) up to N3LL 

‣ Matching of the integrated distribution to N3LO via a 
multiplicative matching, i.e.  

‣ Deviations from NNLO below 30 GeV 

‣ Scale unc. ~10% down to very small  
transverse momentum
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[Boughezal	et	al.	’15]	
[Caola	et	al.	’15] 
[Chen	et	al.	‘16]

[Anastasiou	et	al.	’15-’16]

RadISH+NNLOJET, 13 TeV, mH = 125 GeV
µR = µF = mH, Q = mH/2
PDF4LHC15 (NNLO)
uncertainties with µR, µF, Q variations (x 3/2)
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An example: Higgs pT at N3LL+NNLO



• CSS result recovered by simply transforming observable into b-space  

• Clear physical picture of the dynamics of azimuthal cancellations at small 
transverse momentum 

• Transition from exponential to a power-like suppression at small transverse 
momentum

25

Small transverse momentum limit

'

e.g. NLL with L(kt1) = 1 for simplicity
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Small transverse momentum limit

'

e.g. NLL with L(kt1) = 1 for simplicity

as pt ! 0 Sudakov is ”frozen” at kt1 � pt

(no exponential suppression)

Random azimuthal orientation of momenta

leads to scaling / pt/k
2
t1



Generalisation to other observables
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• Extension to non-inclusive observables:  

• Although the resummed formula obtained here is valid for inclusive observables, the 
Sudakov radiator is universal for all observables which feature the same scaling for a 
single, soft-collinear emission, i.e. the same LL structure 

• The exclusive treatment of resolved correlated blocks (n>1) is simplified by noticing 
that only a finite number of them must be included in the resolved radiation beyond 
NLL 

• This leads to a general algorithm for all  
rIRC observables:  
 
   e.g. kt-algorithm 2-jet rate in e+e-  
              at NNLL+NNLO

Vsc({p̃}, k) =
✓
kt
M
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• Extension to non-inclusive observables:  

• Although the resummed formula obtained here is valid for inclusive observables, the 
Sudakov radiator is universal for all observables which feature the same scaling for a 
single, soft-collinear emission, i.e. the same LL structure 

• The exclusive treatment of resolved correlated blocks (n>1) is simplified by noticing 
that only a finite number of them must be included in the resolved radiation beyond 
NLL 

• Multi-differential cross sections: 

• Not being fully inclusive in the radiation allows  
one to have more exclusive cuts. The logarithmic  
accuracy can be easily spoiled (a lot of care is required!) 

• This makes it possible to access exclusive 
cross sections with higher logarithmic order (?)

Vsc({p̃}, k) =
✓
kt
M
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Conclusions
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• Higher-order resummation can be formulated directly in momentum space 
without the need for a factorisation for the considered observable 

• Currently, two-scale problems in two-emitter processes are solved for all rIRC safe 
cases 

• Systematic extension to any logarithmic order 

• Efficient implementation in a computer code: automation possible 

• Connection between analytic resummation and parton showers one step closer 

• Future directions 

• This method is not bound to the resummation in full QCD: formulation in 
SCET framework possible 

• Extension to processes with more than two legs requires a differential 
formulation of the soft resolved radiation with wide angles 

• Applicability to NG problems under study



Thank you for listening
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• Since the transverse momenta of the resolved reals are of the same order, we can expand the 
whole integrand about              up to the desired logarithmic accuracy 

• This expansion allows us to compute higher-order corrections to the NLL resolved reals by 
simply including one correction at a time

Numerical implementation: RadISH

kti ⇠ kt1

‣ Coefficient	functions	and	
hard-virtual	corrections	
absorbed	into	effective	
parton	luminosities	

‣ The	ensemble	of	NLL	real	
emissions	dZ	is	generated	
as	a	parton	shower.	Fast	
numerical	evaluation	with	
Monte-Carlo	methods.	
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e.g.	expansion	up	to	NLL
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kti/kt1 = ⇣i = O(1)

e.g.	expansion	up	to	NLL

Numerical implementation: RadISH
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whole integrand about              up to the desired logarithmic accuracy 

• This expansion allows us to compute higher-order corrections to the NLL resolved reals by 
simply including one correction at a time

32

kti ⇠ kt1

‣ Coefficient	functions	and	
hard-virtual	corrections	
absorbed	into	effective	
parton	luminosities	

‣ The	ensemble	of	NLL	real	
emissions	dZ	is	generated	
as	a	parton	shower.	Fast	
numerical	evaluation	with	
Monte-Carlo	methods.	
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• Since the transverse momenta of the resolved reals are of the same order, we can expand the 
whole integrand about              up to the desired logarithmic accuracy 

• This expansion allows us to compute higher-order corrections to the NLL resolved reals by 
simply including one correction at a time
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kti ⇠ kt1

‣ Coefficient	functions	and	
hard-virtual	corrections	
absorbed	into	effective	
parton	luminosities	

‣ The	ensemble	of	NLL	real	
emissions	dZ	is	generated	
as	a	parton	shower.	Fast	
numerical	evaluation	with	
Monte-Carlo	methods.	

e.g.	expansion	up	to	N3LL

Numerical implementation: RadISH



• At NLL resolved real radiation is soft and collinear, therefore there’s no overlapping 
with the DGLAP evolution (PDFs can be evaluated at kt1) 

• Beyond NLL a resolved real hard-collinear radiation is allowed; need to perform of 
DGLAP evolution exclusively for a fixed number of collinear emissions 

• e.g. at NNLL expand around the IR cutoff of the last resolved emission
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Treatment of initial state radiation

ln kt/Q

⌘

z(1) < 1z(2) < 1

ln(kt,1/Q)

ln(✏kt,1/Q)
ln(1/✏)

D
G
LA

P

q(x, ✏kt,1) = q(x, kt,1)� ↵s(kt,1)

⇡

P (z)⌦ q(x, kt,1) ln
1

✏

+O(N3LL)
cutoff	dependence	cancels	

against	the	real	counterpart

real emissions

Sudakov suppression
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• Hard-collinear emissions off initial-state legs require some care in the treatment of 
kinematics. Final result reads 

• Formulation equivalent to b-space result, up to a scheme change. Using the delta 
representation for the distribution one finds

Equivalence to CSS formula
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