

Resummation for transverse observables at hadron colliders

Pier Francesco Monni CERN

Mainly based on 1604.02191 and 1705.09127 and ongoing work

DESY Theory Seminar, 29 January 2018

The quest for precision at the LHC

The need for theory precision is twofold

•

•

As a precision machine, the LHC is providing us with %-accurate measurements of SM parameters/dynamics (couplings, PDFs, masses, ...). A full exploitation of this data requires a deep understanding of the theory

Precision can allow for indirect constraints on new physics (NP) through mild distortions in kinematic distributions

- Sensitivity is often improved by looking at exclusive regions of phase space where underlying QCD activity needs to be minimised (e.g. boosted kinematics, vetoes, ...)
- A careful assessment of the SM background is essential in most cases. This already reaches the few-percent level in some scenarios

Fixed-order vs. All-order

- Fixed-order calculations of radiative corrections are formulated in a well established way (technically <u>very challenging</u>, but well posed problem):
 - compute amplitudes at a given order
 - provide an effective subtraction of IRC divergences
 - compute any IRC-safe observable

$$\Sigma(v) = \int_0^v \frac{1}{\sigma_{\rm Born}} \frac{d\sigma}{dv'} dv' \sim 1 + \alpha_s + \alpha_s^2 + \dots$$

- All-order calculations are still at an earlier stage of evolution
 - Each different observable has its own type of sensitivity to IRC physics, it is hard to formulate a general method that works for all at a generic perturbative order
 - Higher-order resummations are therefore often formulated in an observable-dependent way, for few well-behaved collider observables

$$\Sigma(v) = \int_0^v \frac{1}{\sigma_{\text{Born}}} \frac{d\sigma}{dv'} dv' \sim e^{\alpha_s^n L^{n+1} + \alpha_s^n L^n + \alpha_s^n L^{n-1} + \dots} v \to 0$$

Path towards resummation: factorisation

- In the logarithmic regime, Born amplitudes receive radiative corrections from virtual diagrams (unconstrained), and soft/collinear real radiation
- The QCD amplitude (almost always) factorises in these kinematic limits
 - This is a necessary condition to formulate an all-order perturbative calculation (otherwise new structure would arise at each new order)

e.g. emission of a soft gluon

 $\mathcal{M}(k_1, k_2, \ldots, k_n)$

Path towards resummation: factorisation

- In the logarithmic regime, Born amplitudes receive radiative corrections from virtual diagrams (unconstrained), and soft/collinear real radiation
- The QCD amplitude (almost always) factorises in these kinematic limits
 - This is a necessary condition to formulate an all-order perturbative calculation (otherwise new structure would arise at each new order)

e.g. emission of a soft gluon

$$\mathcal{M}(k_1, k_2, \dots, k, \dots, k_n)$$
$$\simeq \mathcal{M}(k_1, k_2, \dots, k_n) \mathcal{M}_{\text{soft}}(k)$$

Factorisation of amplitudes in the IRC

- Consider a IRC observable $V = V(\{\tilde{p}\}, k_1, ..., k_n) \le 1$ in the Born-like limit $V \to 0$
- In this limit radiative corrections are described exclusively by virtual corrections, and collinear and/or soft real emissions (singular limit) — QCD squared **amplitudes factorise** in these regimes w.r.t. the Born, up to regular corrections
- Different observables are sensitive to different singular modes which determine the logarithmic structure of the perturbative expansion (e.g. (non) global, hard-collinear logarithms, ...)

Two-emitter processes

- The strong angular separation between different modes ensures they evolve independently at late times after the collision
- The structure of the coherent soft radiation at large angles (interference between emitters) gets increasingly complex with the number of emitting legs

Non-Global observables

- The strong angular separation between different modes ensures they evolve independently at late times after the collision
- The structure of the coherent soft radiation at large angles (interference between emitters) gets increasingly complex with the number of emitting legs
- For non-global observables one is always sensitive to the full evolution of the soft radiation outside of the resolved phase-space region
- Both soft and collinear modes are present in the general case
- · Collinear modes can be absent

[Dasgupta, Salam '01; Banfi, Marchesini, Smye '02] [Caron-Huot '15-'16; Larkoski, Moult, Neill '15; Becher, Neubert, Rothen, Shao '15-'16]

Two-emitter processes

- The strong angular separation between different modes ensures they evolve independently at late times after the collision
- The structure of the coherent soft radiation at large angles (interference between emitters) gets increasingly complex with the number of emitting legs
- For <u>continuously global observables</u> in processes with two emitters, colour coherence forces the effect of soft modes exchanged with large angles to vanish
- Only collinear (soft/hard) modes effectively remain
- \cdot Soft modes can be absent in specific cases

Factorisation of the observable

Factorisation of the amplitude is not enough as the all-order radiation is tangled by the observable

$$\Sigma(v) = \int d\Phi_{\rm rad} \sum_{n=0}^{\infty} |\mathcal{M}(k_1,\ldots,k_n)|^2 \Theta(v - V(k_1,\ldots,k_n))$$

- In order to perform an all-order calculation, one needs to *break* the observable too into hard, soft and collinear pieces. This can be done for some observables which treat the radiation rather inclusively
 - Resummation can be performed, e.g., by formulating a soft-collinear EFT of the singular modes (SCET) e.g. the Thrust event shape $\tau \equiv 1 T = 1 \max_{\vec{n}} \frac{\sum_i |\vec{p_i} \cdot \vec{n}|}{\sum_i |\vec{p_i}|}$ [Beneke, Chapovsky, Diehl, Feldmann '02]

$$\Theta(Q^{2}\tau - \bar{k}^{2} - k^{2} - wQ) = \frac{1}{2\pi i} \int_{C} \frac{d\nu}{\nu} e^{\nu\tau Q^{2}} e^{-\nu k^{2}} e^{-\nu k^{2}} e^{-\nu wQ}$$

$$\bar{n} - \text{collinear}$$

$$n - \text{collinear}$$

$$\Sigma(\tau) = |\mathcal{H}|^{2} \frac{1}{2\pi i} \int_{C} \frac{d\nu}{\nu} e^{\nu\tau Q^{2}} S(wQ) \mathcal{J}_{n}(k^{2}) \mathcal{J}_{\bar{n}}(\bar{k}^{2}) + \mathcal{O}(\tau)$$

Eluding observable factorisation

- Factorisation is a powerful tool, but limited to observables that have a simple analytic expression in the relevant limits or do not mix soft and collinear radiation (e.g. jet rates)
- Ultimately, we want to use the modern knowledge of IRC dynamics to make more accurate generators. At present a general framework to assess the accuracy of Parton Showers is missing
 - It is of primary importance to formulate a link between higher-order resummation and PS
- Can we devise a formulation without a factorisation formula ?
 - *recursive* IRC safety: simple <u>set of criteria for the observable</u> that allows one to formulate the resummation at NLL for global observables without the need for an explicit factorisation.
 [Banfi, Salam, Zanderighi '01-'04]
 - Most of modern global observables fall into this category. Exceptions exist: e.g. rIRC unsafe observables (e.g. old JADE and Geneva algorithms), Sudakov-safe observables. No general structure beyond LL for these is known yet
 - The method can be reformulated and systematically extended at higher logarithmic orders

[Banfi, McAslan, PM, Zanderighi '14-'16][PM, Re, Torrielli '16][Bizon, PM, Re, Rottoli, Torrielli '17]

A case study: transverse observables

Transverse observables in colour-singlet production offer a clean experimental and theoretical environment for precision physics:

$$V(\{\tilde{p}\},k)\equiv V(k)=d_\ell\,g_\ell(\phi)\left(\frac{k_t}{M}\right)^a$$

- SM measurements (e.g. W, Z, photon,...): parton distributions, strong coupling, W mass,...
- · BSM measurements/constraints (e.g. Higgs): light/heavy NP, Yukawa couplings,...

Of this class, the family of inclusive observables probes directly the kinematics of the colour singlet:

 $V(\{\tilde{p}\}, k_1, \dots, k_n) = V(\{\tilde{p}\}, k_1 + \dots + k_n)$

- \cdot sensitive to non-perturbative effects (hadronisation, intrinsic kt) only through transverse recoil
- · very little/no sensitivity to multi-parton interactions
- measured precisely at experiments
- Experimental uncertainty is already at the % level (or less) in some cases (e.g. Z production). Perturbation theory must be pushed to its limits

e.g. Z/H at small transverse momentum

Study of small-pt region received a lot of attention in collider literature. Theoretically, it offers a clean environment to test/calibrate exclusive generators against more accurate predictions. Experimentally, shape is sensitive to light-quark Yukawa couplings

Theoretically interesting observable. Two mechanisms compete in the $p_t \rightarrow 0$ limit

- Sudakov (exponential) suppression when $k_{ti} \sim p_t$
- Azimuthal cancellations (power suppression, dominant) when $k_{ti} \gg p_t$

Standard solution obtained in impact-parameter space. Information on the radiation entirely lost n

$$\delta^{(2)}(\vec{p_t} - (\vec{k}_{t1} + \dots + \vec{k}_{tn})) = \int \frac{d^2b}{4\pi^2} e^{-i\vec{b}\cdot\vec{p_t}} \prod_{i=1}^n e^{i\vec{b}\cdot\vec{k}_{ti}},$$

Coefficient functions and anomalous dimensions known up to N³LL, except for four-loop cusp [Catani, Grazzini '11][Catani et al. '12][Gehrmann, Luebbert, Yang '14][Davies, Stirling '84] [De Florian, Grazzini '01][Becher, Neubert '10][Li, Zhu '16][Vladimirov '16]

e.g. Z/H at small transverse momentum

Study of small-pt region received a lot of attention in collider literature. Theoretically, it offers a clean environment to test/calibrate exclusive generators against more accurate predictions. Experimentally, shape is sensitive to light-quark Yukawa couplings

Theoretically interesting observable. Two mechanisms compete in the $p_t \rightarrow 0$ limit

Coefficient functions and anomalous dimensions known up to N³LL, except for four-loop cusp [Catani, Grazzini '11][Catani et al. '12][Gehrmann, Luebbert, Yang '14][Davies, Stirling '84] [De Florian, Grazzini '01][Becher, Neubert '10][Li, Zhu '16][Vladimirov '16]

Direct space: virtual corrections

Write all-order cross section as ($V(\{\tilde{p}\}, k_1, \dots, k_n) = |\vec{k}_{t1} + \dots + \vec{k}_{tn}|$)

$$\Sigma(v) = \int d\Phi_B \mathcal{V}(\Phi_B) \sum_{n=0}^{\infty} \int \prod_{i=1}^{n} [dk_i] |M(\tilde{p}_1, \tilde{p}_2, k_1, \dots, k_n)|^2 \Theta \left(v - V(\{\tilde{p}\}, k_1, \dots, k_n)\right)$$

All-order form factor e.g. [Dixon, Magnea, Sterman '08]

Write all-order cross section as ($V(\{\tilde{p}\}, k_1, \dots, k_n) = |\vec{k}_{t1} + \dots + \vec{k}_{tn}|$)

•

•

$$\Sigma(v) = \int d\Phi_B \mathcal{V}(\Phi_B) \sum_{n=0}^{\infty} \int \prod_{i=1}^{n} [dk_i] |M(\tilde{p}_1, \tilde{p}_2, k_1, \dots, k_n)|^2 \Theta \left(v - V(\{\tilde{p}\}, k_1, \dots, k_n)\right)$$

A Real emissions Logarithmic counting: we need a logarithmic hierarchy in the squared amplitudes (resummation means iteration of lower-order amplitudes)

+

Write all-order cross section as ($V(\{\tilde{p}\}, k_1, \dots, k_n) = |\vec{k}_{t1} + \dots + \vec{k}_{tn}|$)

•

•

$$\Sigma(v) = \int d\Phi_B \mathcal{V}(\Phi_B) \sum_{n=0}^{\infty} \int \prod_{i=1}^{n} [dk_i] |M(\tilde{p}_1, \tilde{p}_2, k_1, \dots, k_n)|^2 \Theta \left(v - V(\{\tilde{p}\}, k_1, \dots, k_n)\right)$$

A Real emissions Logarithmic counting: we need a logarithmic hierarchy in the squared amplitudes (resummation means iteration of lower-order amplitudes)

 $+ \dots$

Write all-order cross section as ($V(\{\tilde{p}\}, k_1, \dots, k_n) = |\vec{k}_{t1} + \dots + \vec{k}_{tn}|$)

•

•

$$\Sigma(v) = \int d\Phi_B \mathcal{V}(\Phi_B) \sum_{n=0}^{\infty} \int \prod_{i=1}^{n} [dk_i] |M(\tilde{p}_1, \tilde{p}_2, k_1, \dots, k_n)|^2 \Theta \left(v - V(\{\tilde{p}\}, k_1, \dots, k_n)\right)$$

Logarithmic counting: we need a logarithmic hierarchy in the squared amplitudes (resummation means iteration of lower-order amplitudes)

+.

Write all-order cross section as ($V(\{\tilde{p}\}, k_1, \dots, k_n) = |\vec{k}_{t1} + \dots + \vec{k}_{tn}|$)

•

•

$$\Sigma(v) = \int d\Phi_B \mathcal{V}(\Phi_B) \sum_{n=0}^{\infty} \int \prod_{i=1}^{n} [dk_i] |M(\tilde{p}_1, \tilde{p}_2, k_1, \dots, k_n)|^2 \Theta \left(v - V(\{\tilde{p}\}, k_1, \dots, k_n)\right)$$

A Real emissions Logarithmic counting: we need a logarithmic hierarchy in the squared amplitudes (resummation means iteration of lower-order amplitudes)

Write all-order cross section as $(V(\{\tilde{p}\}, k_1, \dots, k_n) = |\vec{k}_{t1} + \dots + \vec{k}_{tn}|)$ $\Sigma(v) = \int d\Phi_B \mathcal{V}(\Phi_B) \sum_{n=0}^{\infty} \int \prod_{i=1}^{n} [dk_i] |\underline{M}(\tilde{p}_1, \tilde{p}_2, k_1, \dots, k_n)|^2 \Theta (v - V(\{\tilde{p}\}, k_1, \dots, k_n))$ Real emissions

Recast all-order squared ME for *n* real emissions as iteration of <u>correlated blocks</u>

· Scaling of the observable in the presence of radiation *must* preserve the above hierarchy

$$\begin{split} |M(\tilde{p}_{1}, \tilde{p}_{2}, k_{1}, \dots, k_{n})|^{2} &= |M_{B}(\tilde{p}_{1}, \tilde{p}_{2})|^{2} \left\{ \left(\frac{1}{n!} \prod_{i=1}^{n} |M(k_{i})|^{2} \right) + \left[\sum_{a>b} \frac{1}{(n-2)!} \left(\prod_{\substack{i=1\\i\neq a,b}}^{n} |M(k_{i})|^{2} \right) \left| \tilde{M}(k_{a}, k_{b}) \right|^{2} + \right. \\ &\sum_{a>b} \sum_{\substack{c>d\\c,d\neq a,b}} \frac{1}{(n-4)!2!} \left(\prod_{\substack{i=1\\i\neq a,b,c,d}}^{n} |M(k_{i})|^{2} \right) \left| \tilde{M}(k_{a}, k_{b}) \right|^{2} \left| \tilde{M}(k_{c}, k_{d}) \right|^{2} + \dots \right] \\ &+ \left[\sum_{a>b>c} \frac{1}{(n-3)!} \left(\prod_{\substack{i=1\\i\neq a,b,c}}^{n} |M(k_{i})|^{2} \right) \left| \tilde{M}(k_{a}, k_{b}, k_{c}) \right|^{2} + \dots \right] + \dots \right\},$$

Write all-order cross section as $(V(\{\tilde{p}\}, k_1, \dots, k_n) = |\vec{k}_{t1} + \dots + \vec{k}_{tn}|)$ $\Sigma(v) = \int d\Phi_B \mathcal{V}(\Phi_B) \sum_{n=0}^{\infty} \int \prod_{i=1}^{n} [dk_i] |\underline{M}(\tilde{p}_1, \tilde{p}_2, k_1, \dots, k_n)|^2 \Theta(v - V(\{\tilde{p}\}, k_1, \dots, k_n))$ Real emissions

Recast all-order squared ME for *n* real emissions as iteration of <u>correlated blocks</u>

• Scaling of the observable in the presence of radiation *must* preserve the above hierarchy

$$\begin{split} |M(\tilde{p}_{1}, \tilde{p}_{2}, k_{1}, \dots, k_{n})|^{2} &= |M_{B}(\tilde{p}_{1}, \tilde{p}_{2})|^{2} \left\{ \left(\frac{1}{n!} \prod_{i=1}^{n} |M(k_{i})|^{2} \right) + \left[\sum_{a>b} \frac{1}{(n-2)!} \left(\prod_{\substack{i=1\\i\neq a,b}}^{n} |M(k_{i})|^{2} \right) |\tilde{M}(k_{a}, k_{b})|^{2} + \sum_{a>b} \sum_{\substack{c>d\\c,d\neq a,b}} \frac{1}{(n-4)!2!} \left(\prod_{\substack{i=1\\i\neq a,b,c,d}}^{n} |M(k_{i})|^{2} \right) |\tilde{M}(k_{a}, k_{b})|^{2} |\tilde{M}(k_{c}, k_{d})|^{2} + \dots \right] \\ &+ \left[\sum_{a>b>c} \frac{1}{(n-3)!} \left(\prod_{\substack{i=1\\i\neq a,b,c}}^{n} |M(k_{i})|^{2} \right) |\tilde{M}(k_{a}, k_{b}, k_{c})|^{2} + \dots \right] + \dots \right\},$$

Write all-order cross section as $(V(\{\tilde{p}\}, k_1, \dots, k_n) = |\vec{k}_{t1} + \dots + \vec{k}_{tn}|)$ $\Sigma(v) = \int d\Phi_B \mathcal{V}(\Phi_B) \sum_{n=0}^{\infty} \int \prod_{i=1}^{n} [dk_i] |\underline{M}(\tilde{p}_1, \tilde{p}_2, k_1, \dots, k_n)|^2 \Theta (v - V(\{\tilde{p}\}, k_1, \dots, k_n))$ Real emissions

Recast all-order squared ME for *n* real emissions as iteration of <u>correlated blocks</u>

• Scaling of the observable in the presence of radiation *must* preserve the above hierarchy

$$\begin{split} |M(\tilde{p}_{1}, \tilde{p}_{2}, k_{1}, \dots, k_{n})|^{2} &= |M_{B}(\tilde{p}_{1}, \tilde{p}_{2})|^{2} \left\{ \left(\frac{1}{n!} \prod_{i=1}^{n} |M(k_{i})|^{2} \right) + \left[\sum_{a > b} \left(\frac{1}{(n-2)!} \left(\prod_{\substack{i=1 \\ i \neq a, b}}^{n} |M(k_{i})|^{2} \right) \left| \tilde{M}(k_{a}, k_{b}) \right|^{2} + \left[\sum_{a > b} \sum_{\substack{c, c > d \\ c, d \neq a, b}} \left(\frac{1}{(n-4)!2!} \left(\prod_{\substack{i=1 \\ i \neq a, b, c, d}}^{n} |M(k_{i})|^{2} \right) \left| \tilde{M}(k_{a}, k_{b}) \right|^{2} \left| \tilde{M}(k_{c}, k_{d}) \right|^{2} + \dots \right] \right\}, \\ &+ \left[\sum_{a > b > c} \frac{1}{(n-3)!} \left(\prod_{\substack{i=1 \\ i \neq a, b, c}}^{n} |M(k_{i})|^{2} \right) \left| \tilde{M}(k_{a}, k_{b}, k_{c}) \right|^{2} + \dots \right] + \dots \right\}, 16 \end{split}$$

Write all-order cross section as $(V(\{\tilde{p}\}, k_1, \dots, k_n) = |\vec{k}_{t1} + \dots + \vec{k}_{tn}|)$ $\Sigma(v) = \int d\Phi_B \mathcal{V}(\Phi_B) \sum_{n=0}^{\infty} \int \prod_{i=1}^{n} [dk_i] |\underline{M}(\tilde{p}_1, \tilde{p}_2, k_1, \dots, k_n)|^2 \Theta (v - V(\{\tilde{p}\}, k_1, \dots, k_n))$ Real emissions

Recast all-order squared ME for *n* real emissions as iteration of <u>correlated blocks</u>

• Scaling of the observable in the presence of radiation *must* preserve the above hierarchy

$$\begin{split} |M(\tilde{p}_{1}, \tilde{p}_{2}, k_{1}, \dots, k_{n})|^{2} &= |M_{B}(\tilde{p}_{1}, \tilde{p}_{2})|^{2} \left\{ \left(\frac{1}{n!} \prod_{i=1}^{n} |M(k_{i})|^{2} \right) + \\ \left[\sum_{a > b} \left(\frac{1}{(n-2)!} \left(\prod_{\substack{i=1 \\ i \neq a, b}}^{n} |M(k_{i})|^{2} \right) \left| \tilde{M}(k_{a}, k_{b}) \right|^{2} + \\ \sum_{a > b} \sum_{\substack{c > d \\ c, d \neq a, b}} \left(\frac{1}{(n-4)!2!} \left(\prod_{\substack{i=1 \\ i \neq a, b, c, d}}^{n} |M(k_{i})|^{2} \right) \left| \tilde{M}(k_{a}, k_{b}) \right|^{2} \left| \tilde{M}(k_{c}, k_{d}) \right|^{2} + \\ + \left[\sum_{a > b > c} \left(\frac{1}{(n-3)!} \left(\prod_{\substack{i=1 \\ i \neq a, b, c}}^{n} |M(k_{i})|^{2} \right) \left| \tilde{M}(k_{a}, k_{b}, k_{c}) \right|^{2} + \\ \\ + \left[\sum_{a > b > c} \left(\frac{1}{(n-3)!} \left(\prod_{\substack{i=1 \\ i \neq a, b, c}}^{n} |M(k_{i})|^{2} \right) \left| \tilde{M}(k_{a}, k_{b}, k_{c}) \right|^{2} + \\ \\ \\ \\ \\ \end{array} \right] + \\ 16 \end{split}$$

Write all-order cross section as $(V(\{\tilde{p}\}, k_1, \dots, k_n) = |\vec{k}_{t1} + \dots + \vec{k}_{tn}|)$ $\Sigma(v) = \int d\Phi_B \mathcal{V}(\Phi_B) \sum_{n=0}^{\infty} \int \prod_{i=1}^{n} [dk_i] |\underline{M}(\tilde{p}_1, \tilde{p}_2, k_1, \dots, k_n)|^2 \Theta(v - V(\{\tilde{p}\}, k_1, \dots, k_n))$ Real emissions

Recast all-order squared ME for *n* real emissions as iteration of <u>correlated blocks</u>

· Scaling of the observable in the presence of radiation *must* preserve the above hierarchy

e.g. soft radiation (analogous considerations for hard-collinear)

$$|M(\tilde{p}_{1}, \tilde{p}_{2}, k_{1}, \dots, k_{n})|^{2} = |M_{B}(\tilde{p}_{1}, \tilde{p}_{2})|^{2} \left\{ \left(\frac{1}{n!} \prod_{i=1}^{n} |M(k_{i})|^{2} \right) + \left(\sum_{\substack{a > b}} \frac{1}{(n-2)!} \left(\prod_{\substack{i=1\\i \neq a, b}}^{n} |M(k_{i})|^{2} \right) |\tilde{M}(k_{a}, k_{b})|^{2} + \sum_{\substack{n > b}} \sum_{\substack{c > d\\c, d \neq a, b}} \left(\frac{1}{(n-4)!2!} \left(\prod_{\substack{i=1\\i \neq a, b, c, d}}^{n} |M(k_{i})|^{2} \right) |\tilde{M}(k_{a}, k_{b})|^{2} |\tilde{M}(k_{c}, k_{d})|^{2} + \cdots \right) \right) \right\} + \left[\sum_{\substack{a > b > c}} \frac{1}{(n-3)!} \left(\prod_{\substack{i=1\\i \neq a, b, c}}^{n} |M(k_{i})|^{2} \right) |\tilde{M}(k_{a}, k_{b}, k_{c})|^{2} + \cdots \right) + \cdots \right] \right\},$$

$$16$$

These requirements can be translated into simple scaling properties for the observables, known as recursive IRC safety

Subtraction of the IRC poles between $\sum_{n=0}^{\infty} \int \prod_{i=1}^{n} [dk_i] |M(\tilde{p}_1, \tilde{p}_2, k_1, \dots, k_n)|^2$ and $\mathcal{V}(\Phi_B)$:

· introduce a phase-space resolution scale (slicing parameter) $Q_0 = \epsilon k_{t1}$

- · real correlated blocks with total transverse momentum $k_{ti} < \epsilon k_{t1}$ (unresolved) do not modify the observable, and can be *ignored* in the measurement function
- compute *unresolved* reals and *virtuals* analytically in D dimensions (*much* easier than full observable)

Subtraction of the IRC poles between $\sum_{n=0}^{\infty} \int \prod_{i=1}^{n} [dk_i] |M(\tilde{p}_1, \tilde{p}_2, k_1, \dots, k_n)|^2$ and $\mathcal{V}(\Phi_B)$:

· introduce a phase-space resolution scale (slicing parameter) $Q_0 = \epsilon k_{t1}$

- real correlated blocks with total transverse momentum $k_{ti} < \epsilon k_{t1}$ (unresolved) do not modify the observable, and can be *ignored* in the measurement function
- compute *unresolved* reals and *virtuals* analytically in D dimensions (*much* easier than full observable)

$$\begin{split} \sum_{n=0}^{\infty} |M(\tilde{p}_{1}, \tilde{p}_{2}, k_{1}, \dots, k_{n})|^{2} &\longrightarrow |M_{B}(\tilde{p}_{1}, \tilde{p}_{2})|^{2} \\ &\times \sum_{n=0}^{\infty} \frac{1}{n!} \left\{ \prod_{i=1}^{n} \left(|M(k_{i})|^{2} + \int [dk_{a}][dk_{b}] |\tilde{M}(k_{a}, k_{b})|^{2} \delta^{(2)}(\vec{k}_{ta} + \vec{k}_{tb} - \vec{k}_{ti}) \delta(Y_{ab} - Y_{i}) \right. \\ &\left. + \int [dk_{a}][dk_{b}][dk_{c}] |\tilde{M}(k_{a}, k_{b}, k_{c})|^{2} \delta^{(2)}(\vec{k}_{ta} + \vec{k}_{tb} - \vec{k}_{ti}) \delta(Y_{abc} - Y_{i}) + \dots \right) \bigg\} \end{split}$$

Subtraction of the IRC poles between $\sum_{n=0}^{\infty} \int \prod_{i=1}^{n} [dk_i] |M(\tilde{p}_1, \tilde{p}_2, k_1, \dots, k_n)|^2$ and $\mathcal{V}(\Phi_B)$:

· introduce a phase-space resolution scale (slicing parameter) $Q_0 = \epsilon k_{t1}$

- real correlated blocks with total transverse momentum $k_{ti} < \epsilon k_{t1}$ (unresolved) do not modify the observable, and can be *ignored* in the measurement function
- compute *unresolved* reals and *virtuals* analytically in D dimensions (*much* easier than full observable)

$$\prod_{i=1}^{n} \int [dk_{i}] \mathcal{V}(\Phi_{B}) \sum_{n=0}^{\infty} \frac{1}{n!} \left\{ \prod_{i=1}^{n} \left(|M(k_{i})|^{2} + \int [dk_{a}] [dk_{b}] |\tilde{M}(k_{a}, k_{b})|^{2} \delta^{(2)}(\vec{k}_{ta} + \vec{k}_{tb} - \vec{k}_{ti}) \delta(Y_{ab} - Y_{i}) + \int [dk_{a}] [dk_{b}] [dk_{c}] |\tilde{M}(k_{a}, k_{b}, k_{c})|^{2} \delta^{(2)}(\vec{k}_{ta} + \vec{k}_{tb} + \vec{k}_{tc} - \vec{k}_{ti}) \delta(Y_{abc} - Y_{i}) + \dots \right) \Theta(\epsilon k_{t1} - k_{ti}) \right\}$$

Subtraction of the IRC poles between $\sum_{n=0}^{\infty} \int \prod_{i=1}^{n} [dk_i] |M(\tilde{p}_1, \tilde{p}_2, k_1, \dots, k_n)|^2$ and $\mathcal{V}(\Phi_B)$:

· introduce a phase-space resolution scale (slicing parameter) $Q_0 = \epsilon k_{t1}$

- real correlated blocks with total transverse momentum $k_{ti} < \epsilon k_{t1}$ (unresolved) do not modify the observable, and can be *ignored* in the measurement function
- compute *unresolved* reals and *virtuals* analytically in D dimensions (*much* easier than full observable)

$$\prod_{i=1}^{n} \int [dk_{i}] \mathcal{V}(\Phi_{B}) \sum_{n=0}^{\infty} \frac{1}{n!} \left\{ \prod_{i=1}^{n} \left(|M(k_{i})|^{2} + \int [dk_{a}][dk_{b}]] |\tilde{M}(k_{a}, k_{b})|^{2} \delta^{(2)}(\vec{k}_{ta} + \vec{k}_{tb} - \vec{k}_{ti}) \delta(Y_{ab} - Y_{i}) \right. \\ \left. + \int [dk_{a}][dk_{b}][dk_{c}] |\tilde{M}(k_{a}, k_{b}, k_{c})|^{2} \delta^{(2)}(\vec{k}_{ta} + \vec{k}_{tb} + \vec{k}_{tc} - \vec{k}_{ti}) \delta(Y_{abc} - Y_{i}) + \dots \right) \Theta(\epsilon k_{t1} - k_{ti}) \right\} \\ \propto \int \frac{dk_{t1}}{k_{t1}} \frac{d\phi_{1}}{2\pi} e^{-R(\epsilon k_{t1})} R'(k_{t1})$$

$$(17)$$

Subtraction of the IRC poles between $\sum_{n=0}^{\infty} \int \prod_{i=1}^{n} [dk_i] |M(\tilde{p}_1, \tilde{p}_2, k_1, \dots, k_n)|^2$ and $\mathcal{V}(\Phi_B)$:

· introduce a phase-space resolution scale (slicing parameter) $Q_0 = \epsilon k_{t1}$

- · real correlated blocks with total transverse momentum $k_{ti} < \epsilon k_{t1}$ (unresolved) do not modify the observable, and can be *ignored* in the measurement function
- compute *unresolved* reals and *virtuals* analytically in D dimensions (*much* easier than full observable)

$$R(\epsilon k_{t1}) \equiv \sum_{\ell=1}^{2} \int_{\epsilon k_{t1}}^{M} \frac{dk_{t}}{k_{t}} R'_{\ell}(k_{t}) = \sum_{\ell=1}^{2} \int_{\epsilon k_{t1}}^{M} \frac{dk_{t}}{k_{t}} \left(A_{\ell}(\alpha_{s}(k_{t})) \ln \frac{M^{2}}{k_{t}^{2}} + B_{\ell}(\alpha_{s}(k_{t})) \right)$$
Anomalous dimensions
start differing from b-
space ones at N³LL
$$\int [dk_{i}] \mathcal{V}(\Phi_{B}) \sum_{n=0}^{\infty} \frac{1}{n!} \left\{ \prod_{i=1}^{n} \left(|M(k_{i})|^{2} + \int [dk_{a}][dk_{b}]] |\tilde{M}(k_{a},k_{b})|^{2} \delta^{(2)}(\vec{k}_{ta} + \vec{k}_{tb} - \vec{k}_{ti}) \delta(Y_{ab} - Y_{i}) \right.$$

$$\left. + \int [dk_{a}][dk_{b}][dk_{c}] |\tilde{M}(k_{a},k_{b},k_{c})|^{2} \delta^{(2)}(\vec{k}_{ta} + \vec{k}_{tb} - \vec{k}_{ti}) \delta(Y_{abc} - Y_{i}) + \dots \right) \Theta(\epsilon k_{t1} - k_{ti}) \right\}$$

$$\propto \int \frac{dk_{t1}}{k_{t1}} \frac{d\phi_{1}}{2\pi} e^{-R(\epsilon k_{t1})} R'(k_{t1})$$
17

Subtraction of the IRC poles between $\sum_{n=0}^{\infty} \int \prod_{i=1}^{n} [dk_i] |M(\tilde{p}_1, \tilde{p}_2, k_1, \dots, k_n)|^2$ and $\mathcal{V}(\Phi_B)$:

- · introduce a phase-space resolution scale (slicing parameter) $Q_0 = \epsilon k_{t1}$
- real correlated blocks with total transverse momentum $k_{ti} < \epsilon k_{t1}$ (unresolved) do not modify the observable, and can be *ignored* in the measurement function
- compute *unresolved* reals and *virtuals* analytically in D dimensions (*much* easier than full observable)

$$\hat{\boldsymbol{\Sigma}}_{N_{1},N_{2}}^{c_{1},c_{2}}(v) = \begin{bmatrix} \mathbf{C}_{N_{1}}^{c_{1};T}(\alpha_{s}(\mu_{0}))H(\mu_{R})\mathbf{C}_{N_{2}}^{c_{2}}(\alpha_{s}(\mu_{0})) \end{bmatrix} \int_{0}^{M} \frac{dk_{t1}}{k_{t1}} \int_{0}^{2\pi} \frac{d\phi_{1}}{2\pi} \quad \text{DGLAP anomalous dims} \\ \times e^{-\mathbf{R}(\epsilon k_{t1})} \exp\left\{ -\sum_{\ell=1}^{2} \left(\int_{\epsilon k_{t1}}^{\mu_{0}} \frac{dk_{t}}{k_{t}} \frac{\alpha_{s}(k_{t})}{\pi} \mathbf{\Gamma}_{N_{\ell}}(\alpha_{s}(k_{t})) + \int_{\epsilon k_{t1}}^{\mu_{0}} \frac{dk_{t}}{k_{t}} \mathbf{\Gamma}_{N_{\ell}}^{(C)}(\alpha_{s}(k_{t})) \right) \right\}$$
radiator: of single

RGE evolution of coeff. functions

Sudakov radiator: integral of single inclusive block.

Subtraction of the IRC poles between $\sum_{n=0}^{\infty} \int \prod_{i=1}^{n} [dk_i] |M(\tilde{p}_1, \tilde{p}_2, k_1, \dots, k_n)|^2$ and $\mathcal{V}(\Phi_B)$:

· introduce a phase-space resolution scale (slicing parameter) $Q_0 = \epsilon k_{t1}$

•

- real correlated blocks with total transverse momentum $k_{ti} < \epsilon k_{t1}$ (unresolved) do not modify the observable, and can be *ignored* in the measurement function
- compute *unresolved* reals and *virtuals* analytically in D dimensions (*much* easier than full observable)

$$\begin{split} \hat{\boldsymbol{\Sigma}}_{N_{1},N_{2}}^{c_{1},c_{2}}(v) &= \begin{bmatrix} \mathbf{C}_{N_{1}}^{c_{1};T}(\alpha_{s}(\mu_{0}))H(\mu_{R})\mathbf{C}_{N_{2}}^{c_{2}}(\alpha_{s}(\mu_{0})) \end{bmatrix} \int_{0}^{M} \frac{dk_{t1}}{k_{t1}} \int_{0}^{2\pi} \frac{d\phi_{1}}{2\pi} \mathbf{D} \mathbf{GLAP} \text{ anomalous dims} \\ &\times e^{-\mathbf{R}(\epsilon k_{t1})} \exp\left\{ -\sum_{\ell=1}^{2} \left(\int_{\epsilon k_{t1}}^{\mu_{0}} \frac{dk_{t}}{k_{t}} \frac{\alpha_{s}(k_{t})}{\pi} \mathbf{\Gamma}_{N_{\ell}}(\alpha_{s}(k_{t})) + \int_{\epsilon k_{t1}}^{\mu_{0}} \frac{dk_{t}}{k_{t}} \mathbf{\Gamma}_{N_{\ell}}^{(C)}(\alpha_{s}(k_{t})) \right) \right\} \\ &= \sum_{\ell_{1}=1}^{2} \left(\mathbf{R}_{\ell_{1}}'(k_{t1}) + \frac{\alpha_{s}(k_{t1})}{\pi} \mathbf{\Gamma}_{N_{\ell_{1}}}(\alpha_{s}(k_{t1})) + \mathbf{\Gamma}_{N_{\ell_{1}}}^{(C)}(\alpha_{s}(k_{t1})) \right) \\ &\times \sum_{n=0}^{\infty} \frac{1}{n!} \prod_{i=2}^{n+1} \int_{\epsilon}^{1} \frac{d\zeta_{i}}{\zeta_{i}} \int_{0}^{2\pi} \frac{d\phi_{i}}{2\pi} \sum_{\ell_{i}=1}^{2} \left(\mathbf{R}_{\ell_{i}}'(k_{ti}) + \frac{\alpha_{s}(k_{ti})}{\pi} \mathbf{\Gamma}_{N_{\ell_{i}}}(\alpha_{s}(k_{ti})) + \mathbf{\Gamma}_{N_{\ell_{i}}}^{(C)}(\alpha_{s}(k_{ti})) \right) \\ &\times \Theta\left(v - V(\{\tilde{p}\}, k_{1}, \dots, k_{n+1})\right), \end{split}$$

compute *resolved* (reals only) in 4 dim. with $\epsilon \rightarrow 0$ (MC events !)

Monte Carlo formulation

This is, essentially, a *non-fully-exclusive parton shower* with higher logarithmic accuracy

Monte Carlo formulation

 One great simplification: choice of the resolution variable such that correlated blocks entering at N^kLL in the unresolved radiation only contribute at N^{k+1}LL in the resolved case

· i.e. we can expand out the cutoff dependence and retain in the Radiator only the terms necessary to cancel the singularities in the resolved radiation

$$R(\epsilon k_{t1}) = R(k_{t1}) + R'(k_{t1}) \ln \frac{1}{\epsilon} + \frac{1}{2}R''(k_{t1}) \ln^2 \frac{1}{\epsilon} + \dots$$
Expansion is safe since in the resolved radiation
$$R'(k_{ti}) = R'(k_{t1}) + R''(k_{t1}) \ln \frac{k_{t1}}{k_{ti}} + \dots$$

$$R'(k_{ti}) = R'(k_{t1}) + R''(k_{t1}) \ln \frac{k_{t1}}{k_{ti}} + \dots$$

e.g. at NLL

Monte Carlo formulation

One great simplification: choice of the resolution variable such that correlated blocks entering at N^kLL in the unresolved radiation only contribute at $N^{k+1}LL$ in the resolved case

 $\cdot\,$ i.e. we can expand out the cutoff dependence and retain in the Radiator only the terms necessary to cancel the singularities in the resolved radiation

$$R(\epsilon k_{t1}) = R(k_{t1}) + R'(k_{t1}) \ln \frac{1}{\epsilon} + \frac{1}{2}R''(k_{t1}) \ln^2 \frac{1}{\epsilon} + \dots$$
Expansion is safe since in the resolved radiation
$$R'(k_{t1}) = R'(k_{t1}) + R''(k_{t1}) \ln \frac{k_{t1}}{k_{ti}} + \dots$$

$$R'(k_{t1}) = R'(k_{t1}) + R''(k_{t1}) \ln \frac{k_{t1}}{k_{ti}} + \dots$$

Corrections beyond NLL are obtained as follows

- · Add subleading effects in the Sudakov radiator and constants
- Correct *a fixed number* of the NLL resolved emissions:
 - \cdot only one at NNLL
 - · two at N^3LL

•

An example: Higgs pT at N³LL+NNLO

• Implementation in a MC code (RadISH) up to N³LL

An example: Higgs pT at N³LL+NNLO

- Implementation in a MC code (RadISH) up to N³LL
- Matching of the integrated distribution to N³LO via a multiplicative matching, i.e.

Small transverse momentum limit

· CSS result recovered by simply transforming observable into b-space

 Clear physical picture of the dynamics of azimuthal cancellations at small transverse momentum

e.g. NLL with $\mathcal{L}(k_{t1}) = 1$ for simplicity

•

$$\frac{d^2 \Sigma(v)}{d^2 \vec{p}_t d\Phi_B} = \sigma^{(0)}(\Phi_B) \int \frac{dk_{t1}}{k_{t1}} \frac{d\phi_1}{2\pi} e^{-R(k_{t1})} R'(k_{t1}) \int d\mathcal{Z}[\{R', k_i\}] \delta^{(2)} \left(\vec{p}_t - \left(\vec{k}_{t1} + \dots + \vec{k}_{t(n+1)}\right)\right)$$

Transition from exponential to a power-like suppression at small transverse momentum

$$\frac{d^2 \Sigma(v)}{d p_t d \Phi_B} \simeq 4 \,\sigma^{(0)}(\Phi_B) \, p_t \int_{\Lambda_{\rm QCD}}^M \frac{d k_{t1}}{k_{t1}^3} e^{-R(k_{t1})} \simeq 2 \sigma^{(0)}(\Phi_B) p_t \left(\frac{\Lambda_{\rm QCD}^2}{M^2}\right)^{\frac{16}{25} \ln \frac{41}{16}}$$

Small transverse momentum limit

- · CSS result recovered by simply transforming observable into b-space
- Clear physical picture of the dynamics of azimuthal cancellations at small transverse momentum
- e.g. NLL with $\mathcal{L}(k_{t1}) = 1$ for simplicity

•

$$\frac{d^{2}\Sigma(v)}{d^{2}\vec{p_{t}}d\Phi_{B}} = \sigma^{(0)}(\Phi_{B}) \int \frac{dk_{t1}}{k_{t1}} \frac{d\phi_{1}}{2\pi} e^{-R(k_{t1})} R'(k_{t1}) \int d\mathcal{Z}[\{R',k_{i}\}]\delta^{(2)} \left(\vec{p_{t}} - \left(\vec{k_{t1}} + \dots + \vec{k_{t(n+1)}}\right)\right)$$

as $p_{t} \to 0$ Sudakov is "frozen" at $k_{t1} \gg p_{t}$
(no exponential suppression)

Transition from exponential to a power-like suppression at small transverse momentum

$$\frac{d^2 \Sigma(v)}{d p_t d \Phi_B} \simeq 4 \,\sigma^{(0)}(\Phi_B) \, p_t \int_{\Lambda_{\rm QCD}}^M \frac{d k_{t1}}{k_{t1}^3} e^{-R(k_{t1})} \simeq 2 \sigma^{(0)}(\Phi_B) p_t \left(\frac{\Lambda_{\rm QCD}^2}{M^2}\right)^{\frac{16}{25} \ln \frac{41}{16}}$$

Small transverse momentum limit

· CSS result recovered by simply transforming observable into b-space

 Clear physical picture of the dynamics of azimuthal cancellations at small transverse momentum

e.g. NLL with
$$\mathcal{L}(\mathbf{k}_{t1}) = 1$$
 for simplicity

$$\frac{d^{2}\Sigma(v)}{d^{2}\vec{p}_{t}d\Phi_{B}} = \sigma^{(0)}(\Phi_{B}) \int \frac{dk_{t1}}{k_{t1}} \frac{d\phi_{1}}{2\pi} e^{-R(k_{t1})} R'(k_{t1}) \int d\mathcal{Z}[\{R', k_{i}\}] \delta^{(2)} \left(\vec{p}_{t} - \left(\vec{k}_{t1} + \dots + \vec{k}_{t(n+1)}\right)\right)$$
as $\mathbf{p}_{t} \to 0$ Sudakov is "frozen" at $\mathbf{k}_{t1} \gg \mathbf{p}_{t}$
(no exponential suppression) Random azimuthal orientation of momenta leads to scaling $\propto \mathbf{p}_{t}/\mathbf{k}_{t1}^{2}$

Transition from exponential to a power-like suppression at small transverse momentum

$$\frac{d^2 \Sigma(v)}{d p_t d \Phi_B} \simeq 4 \,\sigma^{(0)}(\Phi_B) \, p_t \int_{\Lambda_{\rm QCD}}^M \frac{d k_{t1}}{k_{t1}^3} e^{-R(k_{t1})} \simeq 2 \sigma^{(0)}(\Phi_B) p_t \left(\frac{\Lambda_{\rm QCD}^2}{M^2}\right)^{\frac{16}{25} \ln \frac{41}{16}}$$

Generalisation to other observables

Extension to non-inclusive observables:

 Although the resummed formula obtained here is valid for inclusive observables, the Sudakov radiator is universal for all observables which feature the same scaling for a single, soft-collinear emission, i.e. the same LL structure

$$V_{\rm sc}(\{\tilde{p}\},k) = \left(\frac{k_t}{M}\right)$$

 The exclusive treatment of resolved correlated blocks (n>1) is simplified by noticing that only a finite number of them must be included in the resolved radiation beyond NLL [Banfi, PM, Salam, Zanderighi '12]

26

This leads to a general algorithm for all rIRC observables:

e.g. k_t-algorithm 2-jet rate in e⁺e⁻ at NNLL+NNLO

•

 Small residual perturbative uncertainty, and reduced sensitivity to hadronisation can be used for an extraction of the strong coupling

Generalisation to other observables

Extension to non-inclusive observables:

 Although the resummed formula obtained here is valid for inclusive observables, the Sudakov radiator is universal for all observables which feature the same scaling for a single, soft-collinear emission, i.e. the same LL structure

$$V_{\rm sc}(\{\tilde{p}\},k) = \left(\frac{k_t}{M}\right)$$

 The exclusive treatment of resolved correlated blocks (n>1) is simplified by noticing that only a finite number of them must be included in the resolved radiation beyond NLL
 [Banfi, PM, Salam, Zanderighi '12]
 [Banfi, McAslan, PM, Zanderighi '14-'16]
 [Banfi, McAslan, PM, Zanderighi '14-'16]

Multi-differential cross sections:

- Not being fully inclusive in the radiation allows one to have more exclusive cuts. The logarithmic accuracy can be easily spoiled (<u>a lot of care is required!</u>)
- This makes it possible to access exclusive cross sections with higher logarithmic order (?)

Conclusions

- Higher-order resummation can be formulated directly in momentum space without the need for a factorisation for the considered observable
- Currently, two-scale problems in two-emitter processes are solved for all rIRC safe cases
 - Systematic extension to any logarithmic order
 - Efficient implementation in a computer code: automation possible
 - · Connection between analytic resummation and parton showers one step closer
- Future directions
 - · This method is not bound to the resummation in full QCD: formulation in SCET framework possible
 - Extension to processes with more than two legs requires a differential formulation of the soft resolved radiation with wide angles
 - · Applicability to NG problems under study

Thank you for listening

- Since the transverse momenta of the <u>resolved</u> reals are of the same order, we can expand the whole integrand about $k_{ti} \sim k_{t1}$ up to the desired logarithmic accuracy
- This expansion allows us to compute higher-order corrections to the NLL *resolved* reals by simply including one correction at a time
- e.g. expansion up to NLL

$$\frac{d\Sigma(v)}{d\Phi_B} = \int \frac{dk_{t1}}{k_{t1}} \frac{d\phi_1}{2\pi} \partial_L \left(-e^{-R(k_{t1})} \mathcal{L}_{N^3 LL}(k_{t1}) \right) \int d\mathcal{Z}[\{R', k_i\}] \Theta \left(v - V(\{\tilde{p}\}, k_1, \dots, k_{n+1}) \right)$$

$$\begin{split} \mathcal{L}_{\mathrm{N^3LL}}(k_{t1}) &= \sum_{c,c'} \frac{d|M_B|_{cc'}^2}{d\Phi_B} \sum_{i,j} \int_{x_1}^1 \frac{dz_1}{z_1} \int_{x_2}^1 \frac{dz_2}{z_2} f_i\left(k_{t1}, \frac{x_1}{z_1}\right) f_j\left(k_{t1}, \frac{x_2}{z_2}\right) \\ &\left\{ \delta_{ci} \delta_{c'j} \delta(1-z_1) \delta(1-z_2) \left(1 + \frac{\alpha_s(\mu_R)}{2\pi} H^{(1)}(\mu_R) + \frac{\alpha_s^2(\mu_R)}{(2\pi)^2} H^{(2)}(\mu_R) \right) \right. \\ &+ \frac{\alpha_s(\mu_R)}{2\pi} \frac{1}{1-2\alpha_s(\mu_R)\beta_0 L} \left(1 - \alpha_s(\mu_R) \frac{\beta_1}{\beta_0} \frac{\ln\left(1 - 2\alpha_s(\mu_R)\beta_0 L\right)}{1-2\alpha_s(\mu_R)\beta_0 L} \right) \\ &\times \left(C_{ci}^{(1)}(z_1) \delta(1-z_2) \delta_{c'j} + \{z_1 \leftrightarrow z_2; c, i \leftrightarrow c', j\} \right) \\ &+ \frac{\alpha_s^2(\mu_R)}{(2\pi)^2} \frac{1}{(1-2\alpha_s(\mu_R)\beta_0 L)^2} \left(\left(C_{ci}^{(2)}(z_1) - 2\pi\beta_0 C_{ci}^{(1)}(z_1) \ln \frac{M^2}{\mu_R^2} \right) \delta(1-z_2) \delta_{c'j} \right) \\ &+ \{z_1 \leftrightarrow z_2; c, i \leftrightarrow c', j\} \right) + \frac{\alpha_s^2(\mu_R)}{(2\pi)^2} \frac{1}{(1-2\alpha_s(\mu_R)\beta_0 L)^2} \left(C_{ci}^{(1)}(z_1) C_{c'j}^{(1)}(z_2) + G_{ci}^{(1)}(z_1) G_{c'j}^{(1)}(z_2) \right) \\ &+ \frac{\alpha_s^2(\mu_R)}{(2\pi)^2} H^{(1)}(\mu_R) \frac{1}{1-2\alpha_s(\mu_R)\beta_0 L} \left(C_{ci}^{(1)}(z_1) \delta(1-z_2) \delta_{c'j} + \{z_1 \leftrightarrow z_2; c, i \leftrightarrow c', j\} \right) \right\} \end{split}$$

 Coefficient functions and hard-virtual corrections absorbed into effective parton luminosities

- Since the transverse momenta of the <u>resolved</u> reals are of the same order, we can expand the whole integrand about $k_{ti} \sim k_{t1}$ up to the desired logarithmic accuracy
- This expansion allows us to compute higher-order corrections to the NLL *resolved* reals by simply including one correction at a time
- e.g. expansion up to NLL

$$\frac{d\Sigma(v)}{d\Phi_B} = \int \frac{dk_{t1}}{k_{t1}} \frac{d\phi_1}{2\pi} \partial_L \left(-e^{-R(k_{t1})} \mathcal{L}_{N^3 LL}(k_{t1}) \right) \int d\mathcal{Z}[\{R', k_i\}] \Theta \left(v - V(\{\tilde{p}\}, k_1, \dots, k_{n+1}) \right)$$

$$k_{ti}/k_{t1} = \zeta_i = \mathcal{O}(1)$$

$$\int d\mathcal{Z}[\{R', k_i\}] G(\{\tilde{p}\}, \{k_i\}) = \epsilon^{R'(k_{t1})} \sum_{n=0}^{\infty} \frac{1}{n!} \prod_{i=2}^{n+1} \int_{\epsilon}^{1} \frac{d\zeta_i}{\zeta_i} \int_{0}^{2\pi} \frac{d\phi_i}{2\pi} R'(k_{t1}) G(\{\tilde{p}\}, k_1, \dots, k_{n+1})$$

- Coefficient functions and hard-virtual corrections absorbed into effective parton luminosities
- The ensemble of NLL real emissions dZ is generated as a parton shower. Fast numerical evaluation with Monte-Carlo methods.

- Since the transverse momenta of the <u>resolved</u> reals are of the same order, we can expand the whole integrand about $k_{ti} \sim k_{t1}$ up to the desired logarithmic accuracy
- This expansion allows us to compute higher-order corrections to the NLL *resolved* reals by simply including one correction at a time
- e.g. expansion up to NNLL

$$\frac{d\Sigma(v)}{d\Phi_B} = \int \frac{dk_{t1}}{k_{t1}} \frac{d\phi_1}{2\pi} \partial_L \left(-e^{-R(k_{t1})} \mathcal{L}_{N^3 LL}(k_{t1}) \right) \int d\mathcal{Z}[\{R', k_i\}] \Theta \left(v - V(\{\tilde{p}\}, k_1, \dots, k_{n+1}) \right)$$

$$+ \int \frac{dk_{t1}}{k_{t1}} \frac{d\phi_{1}}{2\pi} e^{-R(k_{t1})} \int d\mathcal{Z}[\{R', k_{i}\}] \int_{0}^{1} \frac{d\zeta_{s}}{\zeta_{s}} \frac{d\phi_{s}}{2\pi} \left\{ \left(R'(k_{t1})\mathcal{L}_{\text{NNLL}}(k_{t1}) - \partial_{L}\mathcal{L}_{\text{NNLL}}(k_{t1}) \right) \right. \\ \left. \times \left(R''(k_{t1}) \ln \frac{1}{\zeta_{s}} + \frac{1}{2} R'''(k_{t1}) \ln^{2} \frac{1}{\zeta_{s}} \right) - R'(k_{t1}) \left(\partial_{L}\mathcal{L}_{\text{NNLL}}(k_{t1}) - 2 \frac{\beta_{0}}{\pi} \alpha_{s}^{2}(k_{t1}) \hat{P}^{(0)} \otimes \mathcal{L}_{\text{NLL}}(k_{t1}) \ln \frac{1}{\zeta_{s}} \right) \\ \left. + \frac{\alpha_{s}^{2}(k_{t1})}{\pi^{2}} \hat{P}^{(0)} \otimes \hat{P}^{(0)} \otimes \mathcal{L}_{\text{NLL}}(k_{t1}) \right\} \left\{ \Theta \left(v - V(\{\tilde{p}\}, k_{1}, \dots, k_{n+1}, k_{s}) \right) - \Theta \left(v - V(\{\tilde{p}\}, k_{1}, \dots, k_{n+1}) \right) \right\} \right\}$$

- Coefficient functions and hard-virtual corrections absorbed into effective parton luminosities
- The ensemble of NLL real emissions dZ is generated as a parton shower. Fast numerical evaluation with Monte-Carlo methods.

- Since the transverse momenta of the <u>resolved</u> reals are of the same order, we can expand the whole integrand about $k_{ti} \sim k_{t1}$ up to the desired logarithmic accuracy
- This expansion allows us to compute higher-order corrections to the NLL *resolved* reals by simply including one correction at a time
- e.g. expansion up to N^3LL

$$\frac{d\Sigma(v)}{d\Phi_B} = \int \frac{dk_{t1}}{k_{t1}} \frac{d\phi_1}{2\pi} \partial_L \left(-e^{-R(k_{t1})} \mathcal{L}_{N^3 LL}(k_{t1}) \right) \int d\mathcal{Z}[\{R', k_i\}] \Theta \left(v - V(\{\tilde{p}\}, k_1, \dots, k_{n+1}) \right)$$

$$+ \int \frac{dk_{t1}}{k_{t1}} \frac{d\phi_{1}}{2\pi} e^{-R(k_{t1})} \int d\mathcal{Z}[\{R', k_{i}\}] \int_{0}^{1} \frac{d\zeta_{s}}{\zeta_{s}} \frac{d\phi_{s}}{2\pi} \left\{ \left(R'(k_{t1})\mathcal{L}_{\text{NNLL}}(k_{t1}) - \partial_{L}\mathcal{L}_{\text{NNLL}}(k_{t1}) \right) \right. \\ \left. \times \left(R''(k_{t1}) \ln \frac{1}{\zeta_{s}} + \frac{1}{2} R'''(k_{t1}) \ln^{2} \frac{1}{\zeta_{s}} \right) - R'(k_{t1}) \left(\partial_{L}\mathcal{L}_{\text{NNLL}}(k_{t1}) - 2 \frac{\beta_{0}}{\pi} \alpha_{s}^{2}(k_{t1}) \hat{P}^{(0)} \otimes \mathcal{L}_{\text{NLL}}(k_{t1}) \ln \frac{1}{\zeta_{s}} \right) \\ \left. + \frac{\alpha_{s}^{2}(k_{t1})}{\pi^{2}} \hat{P}^{(0)} \otimes \hat{P}^{(0)} \otimes \mathcal{L}_{\text{NLL}}(k_{t1}) \right\} \left\{ \Theta \left(v - V(\{\tilde{p}\}, k_{1}, \dots, k_{n+1}, k_{s}) \right) - \Theta \left(v - V(\{\tilde{p}\}, k_{1}, \dots, k_{n+1}) \right) \right\} \right\}$$

$$+ \frac{1}{2} \int \frac{dk_{t1}}{k_{t1}} \frac{d\phi_{1}}{2\pi} e^{-R(k_{t1})} \int d\mathcal{Z}[\{R', k_{i}\}] \int_{0}^{1} \frac{d\zeta_{s1}}{\zeta_{s1}} \frac{d\phi_{s1}}{2\pi} \int_{0}^{1} \frac{d\zeta_{s2}}{\zeta_{s2}} \frac{d\phi_{s2}}{2\pi} R'(k_{t1}) \\ \times \left\{ \mathcal{L}_{\text{NLL}}(k_{t1}) \left(R''(k_{t1})\right)^{2} \ln \frac{1}{\zeta_{s1}} \ln \frac{1}{\zeta_{s2}} - \partial_{L} \mathcal{L}_{\text{NLL}}(k_{t1}) R''(k_{t1}) \left(\ln \frac{1}{\zeta_{s1}} + \ln \frac{1}{\zeta_{s2}}\right) \right. \\ \left. + \frac{\alpha_{s}^{2}(k_{t1})}{\pi^{2}} \hat{P}^{(0)} \otimes \hat{P}^{(0)} \otimes \mathcal{L}_{\text{NLL}}(k_{t1}) \right\} \\ \times \left\{ \Theta \left(v - V(\{\tilde{p}\}, k_{1}, \dots, k_{n+1}, k_{s1}, k_{s2})\right) - \Theta \left(v - V(\{\tilde{p}\}, k_{1}, \dots, k_{n+1}, k_{s1})\right) - \right. \\ \left. \Theta \left(v - V(\{\tilde{p}\}, k_{1}, \dots, k_{n+1}, k_{s2})\right) + \Theta \left(v - V(\{\tilde{p}\}, k_{1}, \dots, k_{n+1})\right) \right\} + \mathcal{O} \left(\alpha_{s}^{n} \ln^{2n-6} \frac{1}{v}\right) 33$$

- Coefficient functions and hard-virtual corrections absorbed into effective parton luminosities
- The ensemble of NLL real emissions dZ is generated as a parton shower. Fast numerical evaluation with Monte-Carlo methods.

Treatment of initial state radiation

- At NLL *resolved* real radiation is soft and collinear, therefore there's no overlapping with the DGLAP evolution (PDFs can be evaluated at kt1)
- Beyond NLL a *resolved* real hard-collinear radiation is allowed; need to perform of DGLAP evolution exclusively for a fixed number of collinear emissions

e.g. at NNLL expand around the IR cutoff of the last resolved emission

$$q(x,\epsilon k_{t,1}) = q(x,k_{t,1}) - \frac{\alpha_s(k_{t,1})}{\pi} P(z) \otimes q(x,k_{t,1}) \ln \frac{1}{\epsilon} + \mathcal{O}(N^3 LL)$$
 cutof against

Ff dependence cancels t the real counterpart

Equivalence to CSS formula

 Hard-collinear emissions off initial-state legs require some care in the treatment of kinematics. Final result reads

$$\begin{aligned} \frac{d\Sigma(v)}{dp_t d\Phi_B} &= \int_{\mathcal{C}_1} \frac{dN_1}{2\pi i} \int_{\mathcal{C}_2} \frac{dN_2}{2\pi i} x_1^{-N_1} x_2^{-N_2} \sum_{c_1, c_2} \frac{d|M_B|_{c_1 c_2}^2}{d\Phi_B} \mathbf{f}_{N_1}^T(\mu_0) \frac{d\hat{\Sigma}_{N_1, N_2}^{c_1, c_2}(v)}{dp_t} \mathbf{f}_{N_2}(\mu_0) \\ \hat{\Sigma}_{N_1, N_2}^{c_1, c_2}(v) &= \left[\mathbf{C}_{N_1}^{c_1, c_2}(\alpha_s(\mu_0)) H(\mu_R) \mathbf{C}_{N_2}^{c_2}(\alpha_s(\mu_0)) \right] \int_0^M \frac{dk_{t1}}{k_{t1}} \int_0^{2\pi} \frac{d\phi_1}{2\pi} \\ &\times e^{-\mathbf{R}(\epsilon k_{t1})} \exp\left\{ -\sum_{\ell=1}^2 \left(\int_{\epsilon k_{t1}}^{\mu_0} \frac{dk_t}{k_t} \frac{\alpha_s(k_t)}{\pi} \mathbf{\Gamma}_{N_\ell}(\alpha_s(k_t)) + \int_{\epsilon k_{t1}}^{\mu_0} \frac{dk_t}{k_t} \mathbf{\Gamma}_{N_\ell}^{(C)}(\alpha_s(k_t)) \right) \right\} \\ &\sum_{\ell_{t1}=1}^2 \left(\mathbf{R}_{\ell_1}'(k_{t1}) + \frac{\alpha_s(k_{t1})}{\pi} \mathbf{\Gamma}_{N_{\ell_1}}(\alpha_s(k_{t1})) + \mathbf{\Gamma}_{N_{\ell_1}}^{(C)}(\alpha_s(k_{t1})) \right) \\ &\times \sum_{n=0}^\infty \frac{1}{n!} \prod_{i=2}^{n+1} \int_{\epsilon}^1 \frac{d\zeta_i}{\zeta_i} \int_0^{2\pi} \frac{d\phi_i}{2\pi} \sum_{\ell_{i}=1}^2 \left(\mathbf{R}_{\ell_i}'(k_{ti}) + \frac{\alpha_s(k_{t1})}{\pi} \mathbf{\Gamma}_{N_{\ell_i}}(\alpha_s(k_{t1})) + \mathbf{\Gamma}_{N_{\ell_i}}^{(C)}(\alpha_s(k_{t1})) \right) \\ &\times \Theta(v - V(\{\tilde{p}\}, k_1, \dots, k_{n+1})), \end{aligned}$$
Formulation equivalent to b-space result, up to a scheme change. Using the delta representation for the distribution one finds

$$\frac{d\Sigma(v)}{dp_{t}d\Phi_{B}} = \int_{\mathcal{C}_{1}} \frac{dN_{1}}{2\pi i} \int_{\mathcal{C}_{2}} \frac{dN_{2}}{2\pi i} x_{1}^{-N_{1}} x_{2}^{-N_{2}} \sum_{c_{1},c_{2}} \frac{d|M_{B}|_{c_{1}c_{2}}^{2}}{d\Phi_{B}} \mathbf{f}_{N_{1}}^{T}(\mu_{0}) \frac{d\hat{\Sigma}_{N_{1},N_{2}}^{c_{1},c_{2}}(v)}{dp_{t}} \mathbf{f}_{N_{2}}(\mu_{0}) = \frac{f^{-4\pi}}{i=1}$$

$$(1 - J_{0}(bk_{t})) \simeq \Theta(k_{t} - \frac{b_{0}}{b}) + \frac{\zeta_{3}}{12} \frac{\partial^{3}}{\partial \ln(Mb/b_{0})^{3}} \Theta(k_{t} - \frac{b_{0}}{b}) + \dots = \sum_{c_{1},c_{2}} \frac{d|M_{B}|_{c_{1}c_{2}}^{2}}{d\Phi_{B}} \int b \, db \, p_{t} J_{0}(p_{t}b) \, \mathbf{f}^{T}(b_{0}/b) \mathbf{C}_{N_{1}}^{c_{1};T}(\alpha_{s}(b_{0}/b)) H(M) \mathbf{C}_{N_{2}}^{c_{2}}(\alpha_{s}(b_{0}/b)) \mathbf{f}(b_{0}/b) \times \exp\left\{-\sum_{\ell=1}^{2} \int_{0}^{M} \frac{dk_{t}}{k_{t}} \mathbf{R}_{\ell}'(k_{t}) (1 - J_{0}(bk_{t}))\right\}.$$