5th International Solar Neutrino Conference

# Solar neutrinos with the JUNO experiment

G. Salamanna Roma Tre University and INFN Roma Tre

on behalf of the JUNO Collaboration





# JUNO

- The Jiangmen Underground Neutrino Observatory in China
- at distance (~50 km) from 2 power plants optimized for maximum  $\overline{\nu}_{e}$  disappearance
- Facility and detector construction: 2015-20
- expected starting date for data taking: end 2020
- total thermal power available by 2020: 26.6 GW



## JUNO civil construction



- I 340m slope tunnel excavated
   initial delays on account of underground water leaks now under control
- Overburden to JUNO: ~700m (~1900 m.w.e.)



# What drives the detector design?

# MH from reactors: main topic



- Inverse Beta Decay:  $E_{vis} \sim E(\mathbf{v})$ -0.8 MeV
- $\Delta \chi^2$  method to determine correct hierarchy
- → Required energy resolution to determine hierarchy at  $3\sigma$  level in 6 years, with current baseline and parameters, is ~3%/1 MeV
- → "Success" depends on keeping linearity and uniformity of E response under control

# From such goals originate certain requirements...

| Experiment       | Daya Bay     | BOREXINO      | KamLAND       | JUNO           |
|------------------|--------------|---------------|---------------|----------------|
| Target mass      | 20 ton       | ~300 ton      | ~I kton       | ~20 kton       |
| Optical coverage | ~12%         | ~34%          | ~34%          | ~75%           |
| E resolution     | ~7.5%/√E     | ~5%/√E        | ~6%/√E        | ~3%/√E         |
| Light yield      | ~160 p.e/MeV | ~500 p.e./MeV | ~250 p.e./MeV | ~1200 p.e./MeV |

### JUNO detector



# 20 kt liquid scintillator

- High light yield to reduce  $\sigma(E)$  from statistical fluctuations: ~10<sup>4</sup> scintillation photons/MeV
  - ➡ pure organic solvent (LAB)
    - ✓ safer and cheaper than Pseudo-cumene previously largely used, but worse particle discrimination
  - → high fluor (PPO) concentration



High transparency: > 20m
 ⇒ add wavelength shifter (bisMSB)



Cf V.Lozza and Z.Whang yesterday

### Liquid scintillator: purification

- Two main constraints determine need for LS purification (<u>for IBD</u>):
  - attenuation length: > 20 m at  $\lambda$ =430 nm (for 3g/L PPO in LAB)
  - radio-purity: 10<sup>-15</sup> g/g (<sup>238</sup>U, <sup>232</sup>Th) and 10<sup>-17</sup> g/g (<sup>40</sup>K)
- 4 different purification strategies developed and will be put in place:

| attenuation length                                                                                                       | radio-purity                                                                                                                                                                                     |
|--------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Al <sub>2</sub> O <sub>3</sub> column plant based on the ''absorption''<br>technique to remove optical impurities in LAB |                                                                                                                                                                                                  |
| Distillation plant is to remove heavy metal, improve transparency                                                        | <ul> <li>Water extraction is to remove <sup>238</sup>U, <sup>232</sup>Th, <sup>40</sup>K</li> <li>Gas Stripping plant remove the impurities : Ar, Kr, Rn</li> <li>+Distillation plant</li> </ul> |

### JUNO detector



# 20" PMT status

- To maximize photo-coverage use large (20'') PMT
- Ordered I5k "NNVT" MCP-PMT
- + 5K Hamamatsu R12860 "conventional dynode"
- <u>resilience</u>: equipped with protective mask to prevent generation of shock waves if one PMT explodes under water pressure





R12860

NNVT

| Quantity                      | Unit | NNVT                                                                 | R12860                                                                 | Important for                     |
|-------------------------------|------|----------------------------------------------------------------------|------------------------------------------------------------------------|-----------------------------------|
| collection mode               |      | Reflection+Transmission                                              | Transmission                                                           |                                   |
| Quantum efficiency (400 nm)   | %    | 30                                                                   | 30                                                                     | E resolution                      |
| Relative detection efficiency | %    | 110                                                                  | 100                                                                    | E resolution                      |
| TTS                           | ns   | 12                                                                   | 3                                                                      | Vertex position (against<br>bkgs) |
| Anode dark current            | KHz  | 20-30                                                                | 10-50                                                                  | Need for a trigger                |
| After pulse fraction          | %    | 3                                                                    | 10                                                                     |                                   |
| Glass radioactivity           | ppb  | <sup>238</sup> U: 50<br><sup>232</sup> Th: 50<br><sup>40</sup> K: 20 | <sup>238</sup> U: 400<br><sup>232</sup> Th: 400<br><sup>40</sup> K: 40 | Background                        |

### JUNO detector



- photons by surrounding water buffer
- (Cherenkov) and top scintillators



- Unscreened muons can interact with  $^{\rm 12}{\rm C}$  in LS and produce lighter isotopes (esp.  $^9{\rm Li}$  and  $^8{\rm He})$
- Top Tracker: geometrical coverage ~50%
  - veto + provide "calibration" sample to study performance of tracking algorithms (reject un-vetoed muons passing through central detector off-line)
- Top Tracker has been shipped to near-JUNO site for aging tests

### Water pool





- Even if LS is purified, surrounding environment intrinsically radioactive + there is cosmogenic bkg
- Stop  $\beta$  and  $\alpha$  through passive veto
- Look for "Outside-in" *n* close to muon Cherenkov radiation in 35 kton of ultra-pure water around central sphere
- Light collected by 2k 20" PMTs
  - •veto system efficiency expected to be > 95%

## JUNO detector



- Mature design
- 2016-2017 Detector component production
- 2016-2019 PMT production
- 2018-2019 Detector assembly and installation
- 2020 Filling

➡front-end electronics under water with challenging design and testing currently under-way for resilience

### Solar oscillation parameters - expectations

|                      |         | ~reactor   | ~radio and | E scale   | Enon       |
|----------------------|---------|------------|------------|-----------|------------|
|                      |         |            | cosmo      |           | uniformity |
|                      | Nominal | + B2B (1%) | + BG       | + EL (1%) | + NL (1%)  |
| $\sin^2 \theta_{12}$ | 0.54%   | 0.60%      | 0.62%      | 0.64%     | 0.67%      |
| $\Delta m_{21}^2$    | 0.24%   | 0.27%      | 0.29%      | 0.44%     | 0.59%      |
| $ \Delta m_{ee}^2 $  | 0.27%   | 0.31%      | 0.31%      | 0.35%     | 0.44%      |
|                      |         |            |            |           |            |

Impact on <u>solar neutrino parameters from reactor neutrino</u> <u>oscillations</u> with a:

- large mass
- detector positioned right after a full oscillation cycle
- •JUNO will contribute significantly to global fits to ''I-2'' parameters

### Solar neutrinos at JUNO (J. Phys. G 43 (2016) 030401)

- Caveat: with an "evolving" detector, all figures are preliminary and analyses still *in nuce*
- I am presenting main advantages and issues in JUNO

# Main goals, pros and issues

 ${\ensuremath{\bigodot}}$  Goal: new measurements of  $^7\text{Be}$  and  $^8\text{B}$  fluxes to help constrain metallicity in Sun-like stars

• Signature for solar neutrinos will be "singles" from ES:

$$\nu_{e,\mu,\tau} + e^- \rightarrow \nu_{e,\mu,\tau} + e^-$$

✓ JUNO has large exposure ideal to enhance statistics
 ✓ Unprecedented E<sub>res</sub> (e.g. isolate <sup>7</sup>Be from "shoulder" in ES e<sup>-</sup> spectrum)
 → JUNO shallower than previous "solar experiments" (relies on "double coincidence" to reject bkg in reactor physics)

- Large "monolithic" liquid scintillator with no directionality
  - Only statistical rejection of (esp.)  $\beta$  and  $\gamma$  bkg

Radio-purity (for <sup>7</sup>Be/low <sup>8</sup>B) and event-by-event cosmogenic veto (upper part of <sup>8</sup>B spectrum) capabilities will be the main challenges

• also, dedicated triggers and study of  $^{\rm I4}\rm C-^{\rm I4}\rm C$  overlap might be needed for low E (pp and  $^7\rm Be)$ 

### What one will see...

![](_page_18_Figure_1.jpeg)

# Background rates

|                | Selection       | IBD efficiency | IBD | $\operatorname{Geo-}\!\nu s$ | Accidental             | <sup>9</sup> Li/ <sup>8</sup> He | Fast $n$ | $(\alpha, n)$ |
|----------------|-----------------|----------------|-----|------------------------------|------------------------|----------------------------------|----------|---------------|
|                | -               | -              | 83  | 1.5                          | $\sim 5.7 \times 10^4$ | 84                               | -        | -             |
| Geo:1.8%       | Fiducial volume | 91.8%          | 76  | 1.4                          |                        | 77                               | 0.1      | 0.05          |
| 1.50/          | Energy cut      | 97.8%          |     |                              | 410                    |                                  |          |               |
| Acc: 1.5%      | Time cut        | 99.1%          | 73  | 1.3                          |                        | 71                               |          |               |
| 91 i/8He. 2 7% | Vertex cut      | 98.7%          |     |                              | 1.1                    |                                  |          |               |
| 11/110.2.770   | Muon veto       | 83%            | 60  | 1.1                          | 0.9                    | 1.6                              |          |               |
|                | Combined        | 73%            | 60  |                              |                        | 3.8                              |          |               |

#### **Expected upper limit for each material (Preliminary)**

N/day

| Matarial                             | Mass             | Upper limit       |                     |               |                           |                                | Singles(Hz) |                 |
|--------------------------------------|------------------|-------------------|---------------------|---------------|---------------------------|--------------------------------|-------------|-----------------|
| Material                             | 111455           | $^{238}U$         | <sup>232</sup> Th   | $^{40}$ K     | $^{222}$ Rn               | $^{60}$ Co                     | All volume  | Fiducial volume |
| LS \star                             | 20kt             | $10^{-6}$ ppb     | $10^{-6}$ ppb       | $10^{-7}$ ppb | $1.4 \times 10^{-13}$ ppb |                                | 2.39        | 2.2             |
| Acrylic 🗯                            | 561t             | 1ppt              | 1ppt                | 1ppt          |                           |                                | 6.92        | 0.36            |
| Oxygen-free copper                   | 10t              | 0.099ppb          | 0.1ppb              | 0.14ppt       |                           | $1.8 \mathrm{mBq/kg}$          | 2.44        | 0.2             |
| Dust                                 |                  |                   |                     |               |                           |                                | 1           | 0.1             |
| Pulley and Ultrasonic receiver Array |                  |                   |                     |               |                           |                                | 1           | 0.1             |
| SS tank                              | 350t             | 0.097ppb          | $1.97 \mathrm{ppb}$ | 0.05 ppb      |                           | $2.0\mathrm{mBq/kg}$           | 0.89        | 0.087           |
| PMT alass 🛨                          | 156t -           | 400ppb            | 400ppb              | 40ppb         | Hamamastu PMT             |                                | 17.03       | 9.49            |
|                                      |                  | $50 \mathrm{ppb}$ | 50ppb               | 20ppb         | NNVT PMT                  |                                | 17.55       | 2.42            |
| PMT potting sealant                  | 6.6t             | $12 \mathrm{ppb}$ | 26ppb               | 25 ppb        |                           |                                | 1           | 0.1             |
| PMT protection cover                 | 177.5t           | 10ppt             | 10ppt               | 10ppt         |                           |                                |             | 0.01            |
| PMT potting shell                    | 177.5t           | 10ppt             | 10ppt               | 10ppt         |                           |                                |             | 0.01            |
| Cable                                |                  |                   |                     |               |                           |                                |             | 0.01            |
| CUU                                  |                  |                   |                     |               |                           |                                |             | 0.01            |
| Radon in water $\star$               | $35 \mathrm{kt}$ |                   |                     |               |                           | $0.2 \mathrm{Bq}/\mathrm{m}^3$ | 16          | 1.3             |
| Rock                                 |                  | 10ppm             | 30ppm               | 5ppm          |                           |                                | 7.4         | 0.984           |
| Sum 57.0                             |                  |                   |                     |               |                           |                                |             | 7.9             |

> The most critical materials are shown with "stars" in the material column.

# Background processes

|                | Selection       | IBD efficiency | IBD | Geo- $\nu s$ | Accidental             | <sup>9</sup> Li/ <sup>8</sup> He | Fast $n$ | $(\alpha, n)$ |
|----------------|-----------------|----------------|-----|--------------|------------------------|----------------------------------|----------|---------------|
|                | -               | -              | 83  | 1.5          | $\sim 5.7 \times 10^4$ | 84                               | -        | -             |
| Geo:1.8%       | Fiducial volume | 91.8%          | 76  | 1.4          |                        | 77                               | 0.1      | 0.05          |
| 1.50/          | Energy cut      | 97.8%          |     |              | 410                    |                                  |          |               |
| Acc: 1.5%      | Time cut        | 99.1%          | 73  | 1.3          |                        | 71                               |          |               |
| 9L i/8He. 2 7% | Vertex cut      | 98.7%          |     |              | 1.1                    |                                  |          |               |
| 1/1/110.2.770  | Muon veto       | 83%            | 60  | 1.1          | 0.9                    | 1.6                              |          |               |
|                | Combined        | 73%            | 60  |              | -                      | 3.8                              |          |               |

#### **Expected upper limit for each material (Preliminary)**

N/day

| Motorial                             |                  |                   | Upper limit       |                  |                           |                       |            | Singles(Hz)     |  |
|--------------------------------------|------------------|-------------------|-------------------|------------------|---------------------------|-----------------------|------------|-----------------|--|
| Material                             | 111055           | $^{238}U$         | <sup>232</sup> Th | $^{40}$ K        | $^{222}$ Rn               | $^{60}$ Co            | All volume | Fiducial volume |  |
| LS \star                             | 20kt             | $10^{-6}$ ppb     | $10^{-6}$ ppb     | $10^{-7}$ ppb    | $1.4 \times 10^{-13}$ ppb |                       | 2.39       | 2.2             |  |
| Acrylic 苯                            | 561t             | 1ppt              | 1ppt              | $1 \mathrm{ppt}$ |                           |                       | 6.92       | 0.36            |  |
| Oxygen-free copper                   | 10t              | 0.099ppb          | 0.1ppb            | 0.14ppt          |                           | $1.8 \mathrm{mBq/kg}$ | 2.44       | 0.2             |  |
| Dust                                 |                  |                   |                   |                  |                           |                       | 1          | 0.1             |  |
| Pulley and Ultrasonic receiver Array |                  |                   |                   |                  |                           |                       | 1          | 0.1             |  |
| SS tank                              | 350t             | 0.097ppb          | 1.97ppb           | 0.05 ppb         |                           | $2.0 \mathrm{mBq/kg}$ | 0.89       | 0.087           |  |
| PMT alses 🛨                          | 156t             | 400ppb            | 400ppb            | 40ppb            | Hamamastu PM              | Т                     | 17.03      | 2.42            |  |
|                                      |                  | $50 \mathrm{ppb}$ | 50ppb             | 20ppb            | NNVT PMT                  |                       | 17.55      |                 |  |
| PMT potting sealant                  | 6.6t             | 12ppb             | 26ppb             | 25 ppb           |                           |                       | 1          | 0.1             |  |
| PMT protection cover                 | 177.5t           | 10ppt             | 10ppt             | 10ppt            |                           |                       |            | 0.01            |  |
| PMT potting shell                    | 177.5t           | 10ppt             | 10ppt             | 10ppt            |                           |                       |            | 0.01            |  |
| Cable                                |                  |                   |                   |                  |                           |                       |            | 0.01            |  |
| CUU                                  |                  |                   |                   |                  |                           |                       |            | 0.01            |  |
| Radon in water $\star$               | $35 \mathrm{kt}$ |                   |                   |                  |                           | $0.2 \mathrm{Bq/m^3}$ | 16         | 1.3             |  |
| Rock                                 |                  | 10ppm             | 30ppm             | 5ppm             |                           |                       | 7.4        | 0.984           |  |
|                                      |                  |                   |                   |                  |                           | Sum                   | 57.0       | 7.9             |  |

> The most critical materials are shown with "stars" in the material column.

# Radio-purity scenarios

• Two scenarios assumed in projections so far

• "<u>baseline</u>": minimum requirement, S/B ~ 1/3, about the same as KamLAND highest solar phase purity, *factor 10 better than "goal for IBD" (slide 9)* 

• "ideal": S/B ~ 2/I, similar to Borexino phase-I

• but both KL and Bx reached better than "ideal" for <sup>238</sup>U and <sup>232</sup>Th from start

Table 6-1: The requirements of singles background rate for doing low energy solar neutrino measurements and the estimated solar neutrino signal rates at JUNO.

| $\begin{tabular}{ c c c c c c c } \hline Internal radiopurity requirement & & & & & & & & & & & & & & & & & & &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                              |                            |                            |                                     |                      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|----------------------------|----------------------------|-------------------------------------|----------------------|
| $ \begin{array}{ c c c c c } \hline & baseline & ideal \\ \hline & 2^{10} Pb & 5 \times 10^{-24} [g/g] & 1 \times 10^{-24} [g/g] \\ \hline & 8^5 Kr & 500 [counts/day/kton] \\ \hline & 2^{38} U & 1 \times 10^{-16} [g/g] & 1 \times 10^{-17} [g/g] \\ \hline & 2^{32} Th & 1 \times 10^{-16} [g/g] & 1 \times 10^{-17} [g/g] \\ \hline & 4^0 K & 1 \times 10^{-17} [g/g] & 1 \times 10^{-18} [g/g] \\ \hline & 4^0 K & 1 \times 10^{-17} [g/g] & 1 \times 10^{-18} [g/g] \\ \hline & 4^0 K & 1 \times 10^{-17} [g/g] & 1 \times 10^{-18} [g/g] \\ \hline & 4^0 K & 1 \times 10^{-17} [g/g] & 1 \times 10^{-18} [g/g] \\ \hline & 4^0 K & 1 \times 10^{-17} [g/g] & 1 \times 10^{-18} [g/g] \\ \hline & 1^{14} C & 1 \times 10^{-17} [g/g] & 1 \times 10^{-18} [g/g] \\ \hline & Cosmogenic background rate [counts/day/kton] \\ \hline & 1^{11} C & 1860 \\ \hline & 1^{0} C & 35 \\ \hline & Solar neutrino signal rate [counts/day/kton] \\ \hline & pp \nu & 1378 \\ \hline & 7Be \nu & 517 \\ \hline & pep \nu & 28 \\ \hline & ^8B \nu & 4.5 \\ \hline & 1^3 N/^{15} O/^{17} F \nu & 25/28/0.7 (scaling from Bx) \\ \hline & & & & & & \\ \hline & & & & \\ \hline & & & &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                              | Internal radiopurity requ  | irement                    |                                     |                      |
| $ \begin{array}{ c c c c c c } \hline & & & & & & & & & & & & & & & & & & $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                              | baseline                   | ideal                      |                                     |                      |
| $ \begin{array}{ c c c c c } & & & & & & & & & & & & & & & & & & &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <sup>210</sup> Pb            | $5 \times 10^{-24}  [g/g]$ | $1 \times 10^{-24}  [g/g]$ |                                     |                      |
| $\begin{array}{ c c c c c c } \hline & & & & & & & & & & & & & & & & & & $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $^{85}$ Kr                   | 500 [counts/day/kton]      | 100 [counts/day/kton]      |                                     |                      |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $^{238}\mathrm{U}$           | $1 \times 10^{-16}  [g/g]$ | $1 \times 10^{-17}  [g/g]$ |                                     |                      |
| $ \begin{array}{ c c c c c } \hline & 40 \text{K} & 1 \times 10^{-17} \text{ [g/g]} & 1 \times 10^{-18} \text{ [g/g]} \\ \hline & 1 \times 10^{-17} \text{ [g/g]} & 1 \times 10^{-18} \text{ [g/g]} \\ \hline & 1 \times 10^{-18}  [g/g]$ | $^{232}$ Th                  | $1 \times 10^{-16}  [g/g]$ | $1 \times 10^{-17}  [g/g]$ |                                     |                      |
| $\begin{array}{ c c c c c }\hline & 1 \times 10^{-17} \ [g/g] & 1 \times 10^{-18} \ [g/g] \\ \hline & Cosmogenic background rate \ [counts/day/kton] \\\hline & ^{11}C & 1860 \\\hline & ^{10}C & 35 \\\hline & ^{10}C & 35 \\\hline & Solar neutrino signal rate \ [counts/day/kton] \\\hline & Pp \nu & 1378 \\\hline & ^{7}Be \nu & 517 \\\hline & Pep \nu & 28 \\\hline & ^{8}B \nu & 4.5 \\\hline & ^{13}N/^{15}O/^{17}F \nu & 25/28/0.7 \ (scaling from Bx) \\\hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $^{40}\mathrm{K}$            | $1 \times 10^{-17}  [g/g]$ | $1 \times 10^{-18}  [g/g]$ |                                     |                      |
| Cosmogenic background rate [counts/day/kton] $^{11}C$ 1860 $^{10}C$ 35Solar neutrino signal rate [counts/day/kton]• BP05(OP) flux $pp \nu$ 1378 $^{7}Be \nu$ 517 $pep \nu$ 28 $^{8}B \nu$ 4.5 $^{13}N/^{15}O/^{17}F \nu$ 25/28/0.7 (scaling from Bx)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $^{14}C$                     | $1 \times 10^{-17}  [g/g]$ | $1 \times 10^{-18}  [g/g]$ |                                     |                      |
| $^{11}C$ 1860 $^{10}C$ 35Solar neutrino signal rate [counts/day/kton] $pp \nu$ 1378 $^{7}Be \nu$ 517 $pep \nu$ 28 $^{8}B \nu$ 4.5 $^{13}N/^{15}O/^{17}F \nu$ 25/28/0.7 (scaling from Bx)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Cosmog                       | enic background rate [co   | unts/day/kton]             |                                     |                      |
| $^{10}C$ 35Solar neutrino signal rate [counts/day/kton]• BP05(OP) flux $pp \nu$ 1378 $^{7}Be \nu$ 517 $pep \nu$ 28 $^{8}B \nu$ 4.5 $^{13}N/^{15}O/^{17}F \nu$ 25/28/0.7 (scaling from Bx)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <sup>11</sup> C              | 18                         | 60                         |                                     |                      |
| Solar neutrino signal rate [counts/day/kton]• BP05(OP) flux $pp \nu$ 1378• $\oplus$ ES cross-sections $^{7}Be \nu$ 517• $\blacksquare$ C energy threshold cuts $pep \nu$ 28• $^{10}C$ and $^{11}C$ scaled x0.9 from $^{8}B \nu$ 4.5 $^{13}N/^{15}O/^{17}F \nu$ $^{13}N/^{15}O/^{17}F \nu$ 25/28/0.7 (scaling from Bx)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $^{10}\mathrm{C}$            | 3                          | 5                          |                                     |                      |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Solar                        | neutrino signal rate [cou  | nts/day/kton]              | • BP05(OP)                          | flux                 |
| $ \begin{array}{c c} {}^{7}\text{Be }\nu & 517 & \bullet \text{No energy threshold cuts} \\ pep \nu & 28 & \bullet \ & 10^{\circ}\text{C and } \ & 1^{\circ}\text{C scaled x0.9 from} \\ {}^{8}\text{B} \nu & 4.5 & \bullet \ & \text{KamLAND spallation measurmt's} \\ {}^{13}\text{N}/{}^{15}\text{O}/{}^{17}\text{F} \nu & 25/28/0.7 \text{ (scaling from Bx)} \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $pp \nu$                     | 13                         | 78                         | ● ⊕ ES cross                        | -sections            |
| $\begin{array}{c c} pep \nu & 28 \\ & ^8B \nu & 4.5 \\ & ^{13}N/^{15}O/^{17}F \nu & 25/28/0.7 \text{ (scaling from Bx)} \end{array} \qquad \begin{array}{c} \bullet \ ^{10}C \text{ and } ^{11}C \text{ scaled x0.9 from } KamLAND \text{ spallation measurmt's } \\ & & & & \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $^{7}\mathrm{Be}~\nu$        | 51                         | 17                         | • No energy                         | / threshold cuts     |
| $ \begin{array}{ c c c c c } & & & & & & & & & & & & & & & & & & &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | pep $\nu$                    | 2                          | 8                          | • <sup>10</sup> C and <sup>11</sup> | C scaled x0.9 from   |
| $1^{3}$ N/ $^{15}$ O/ $^{17}$ F $\nu$ 25/28/0.7 (scaling from Bx)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $^{8}\mathrm{B} \nu$         | 4                          | .5                         | KamLAND s                           | pallation measurmt's |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $1^{13}N/1^{15}O/1^{7}F \nu$ | 25/28/0.7 (s               | caling from Bx)            |                                     |                      |

• Obviously realistic numbers only after activity measurements and MC tuning completed

• Also in-situ determination with first data will be an important constrain!

### <sup>7</sup>Be

![](_page_22_Figure_1.jpeg)

- Here only internal LS radioactivity considered
  - $\bullet$  External  $\gamma$  neglected because can be removed by fiducial volume cut
- <sup>238</sup>U and <sup>232</sup>Th assumed at secular equilibrium (10-16 or 10-17 g/g)
- Considered here, out of equilibrium: <sup>210</sup>Pb  $\rightarrow$  <sup>210</sup>Bi  $\rightarrow$  <sup>210</sup>Po+ $\beta$ <sup>-</sup> + $\nu$ 
  - will be key point in extracting <sup>7</sup>Be spectrum at "shoulder"
  - <sup>210</sup>Po  $\rightarrow$  <sup>206</sup>Po+ $\alpha$  not included here: studying now Pulse Shape Discrimination to reject it
    - but  $\alpha$  quenching to low energies might make it hard wrt JUNO benchmark  $E_{thr}$
- Effect of dark noise and <sup>14</sup>C at PMT waveform not yet included here
  - see next slide

## Dark noise and pile-up

- Dark noise (O(10 kHz)) overlapping with signal on PMT waveform will impact energy linearity and resolution, especially at <sup>7</sup>Be e<sup>-</sup> energies
- Rate of <sup>14</sup>C is such that **pile-up** with signal could bias energy estimation
- Specific algorithms like "clusterization" a la Borexino being developed
  - Group hits likely to belong to one physics event <u>based on hit arrival time</u>

![](_page_23_Figure_5.jpeg)

# pp?

- if <sup>14</sup>C pile-up is correctly modeled and rejected
- if clusterization removes dark noise contribution effectively
- if quenched  $\alpha$  from Po is identified and rejected by PSD
- by developing dedicated low-energy triggers which go below the current "N(PMT) majority" trigger corresponding to ~ few hundreds of keV

![](_page_24_Figure_5.jpeg)

#### then

- pp can be isolated in a window
   ~160 keV ~230 keV
- will therefore only benefit from mature techniques validated *in-situ* with first data

# <sup>8</sup>B vs radioactive bkgs...

- Mostly <sup>208</sup>TI from <sup>232</sup>Th in the LS and in the PMT glass
  - decays  $\beta^{-}$  to <sup>208</sup>Pb with  $\tau \sim 3$  min and Q=5 keV
  - hard to estimate, especially if we are out of secular equilibrium
  - and Bi-Po might be hard to detect because of  $\alpha$  quenching to low energies
- Expect we'll need to control <sup>232</sup>Th to  $10^{-17}$  g/g to ''follow'' <sup>8</sup>B at E(ES e<sup>-</sup>)  $\ll$  5 MeV
- Contamination from PMT glasses and rest of material can be suppressed by means of fiducial volume
  - but pay a price in acceptance (up to 5m of FV needed?)

# ...and <sup>8</sup>B vs cosmogenic bkgs

- Spallation of cosmic muons on carbon nuclei in the LS molecules
  - Muon rate ~4Hz in JUNO central detector at expt. site depth
  - Signals from short-lives isotopes (T≤ls) can be targeted thanks to effective muon tracking (but watch out for bundles, showers, etc..)
  - preliminary idea: veto cylindrical volume with R=1m for 6.5s

![](_page_26_Figure_5.jpeg)

### ...and <sup>8</sup>B vs cosmogenic bkgs /2: CC

- Idea to use also CC  $\nu_e + {}^{13}C \rightarrow e^- + {}^{13}N$  E\_th=2.2MeV
- Gives a ''double'':
  - prompt electron with  $E_{kin}=E_v-2.2$  MeV
  - delayed from <sup>13</sup>N  $\beta$ <sup>+</sup> decay (Q=2.2 MeV,  $\tau$ =862.8s)
  - a position-based association could reduce cosmogenic bkgs considerably

![](_page_27_Figure_6.jpeg)

Some preliminary estimates for an IBD like CC

# Conclusions

- The JUNO experiment is on course to start operations within next few years
- The collaboration is mostly focusing on designing and building the experiment
  - not much focus on analyses yet
  - especially those which depend crucially on low E bkgs, to be estimated better in situ
- With its unprecedented size and energy resolution, JUNO will complement nicely other scintillator measurements of solar fluxes
  - but several issues along the way
  - algorithmic studies to identify and reject bkgs on-going

# Additional material

### 3" PMT status

![](_page_30_Picture_1.jpeg)

![](_page_30_Figure_2.jpeg)

n: plane of symmetry of the multiplier ic: internal connection

- Bidding completed and <u>26k XP72B22</u> ordered from HZC-Photonics
- custom-made: new development with improved TTS (based on KM3Net design)

# Eres: calibremus, calibremus, calibremus...

- Keeping uncertainty on energy scale < 1% crucial to keep total  $\sigma(E)/E{\sim}3\%$  at 1 MeV
  - uniformly in the detector
- JUNO envisaged complementary methods for E response determination across detector and for various energy loss mechanisms
- ID: Automatic Calibration Unit (ACU)
- $\rightarrow$  along z axis
- 2D: Cable Loop System (CLS)
- ightarrow over vertical planes by means of pulleys
- Guide Tube Calibration System (GTCS)
- $\rightarrow$  to probe outer CD surface
- 3D: Remotely Operated under-LS Vehicle (ROV)
- $\rightarrow$  whole detector volume scanned

Using known radio-active sources:

- <sup>40</sup>K, <sup>54</sup>Mn, <sup>60</sup>Co, <sup>137</sup>Cs (γ)
- <sup>22</sup>Na, <sup>68</sup>Ge, (e<sup>+</sup>)
- <sup>241</sup>Am-Be, <sup>241</sup>Pu-<sup>13</sup>C, <sup>241</sup>Am-<sup>13</sup>C (n)

![](_page_31_Figure_16.jpeg)

# Dual read-out

![](_page_32_Figure_1.jpeg)

 $\checkmark$  75% photo-coverage and collects  $\sim$  I 200 p.e./ MeV

➡ but depending on event E and position, PMT could be "flooded" by p.e. and waveform saturate

→ loss of linearity

 $\rightarrow$  and large cathode  $\rightarrow$  high dark rate

- ➡ 2.5% photo-coverage and collects ~50 p.e./ MeV
- ✓ but operating in photon counting

mode allows for **COmplementary**, unbiased event E determination ✓ and lower dark rate

- \* <u>Multi-calorimetric approach</u> reduces non-stochastic terms ("systematics") in the energy resolution dependence ( $\leq$  3% @ IMeV in total)
- \* allows to extend the dynamical range in N(p.e.)
- \* and improve time and vertex resolution for muon reconstruction (showers saturate 20'' PMT)

JUNO's MH reach

![](_page_33_Figure_2.jpeg)

• "Success" depends on keeping <u>linearity and</u> <u>uniformity of E response</u> under control

- Not only stochastic term: it can be shown that constant term *b* has more impact on MH sensitivity than *a* 
  - $\rightarrow$  non-uniformity of response in 20 KTon = challenge!

$$\frac{\sigma_E}{E} = \sqrt{\left(\frac{a}{\sqrt{E}}\right)^2 + b^2 + \left(\frac{c}{E}\right)^2} \ ,$$

### Scintillator purification: tests

- Pilot plant in the Daya Bay LS hall and has run in Feb-Mar '17
  - filled Daya Bay detector with sample LAB and purified with alumina
  - optimization of fluorescent material to get the final "cocktail"

![](_page_34_Figure_4.jpeg)