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Early model modifications

» 8B strongly temperature sensitive (~T.2%)

* Reduce central temperature, maintain
luminosity

— Core mixing

— Rapid rotation
— 7?77



Intermittent mixing of the solar core?
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The Solar Spoon

F. W. W, DILKE & D. 0. GOUGH

Institute of Theoretical Astronomy, University of Cambridge

Overstability causes the Sun’s core to
mix every few hundred million years.
This induces geological ice ages and
temporarily depresses the solar neutrino

flux.




Intermittent mixing of the solar core?
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Neutrino flux (s.n.u.)

Dilke & Gough (1972; Nature 240, 262)



Oscillations on the solar surface
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Global solar
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oscillations?

H. A. Hill (1975; IBM Conference on
Astrophysical Fluid Dynamics,
Cambridge).



Asymptotics of p modes

where

o = a(v) depends on surface properties.

Large frequency separation:

Avp =vp — V1]~ Av



Global acoustic
modes of the Sun

Frequency (mHz)

Claverie et al. (1979; Nature 282, 591)



The solar core observed from the South

Pole
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Grec et al., Nature 288, 541; 1980



The solar core observed from the South
Pole
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Small frequency separations

[
vy ~ Av (n—|—§+oz> + €,
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€Enl = l(l -+ 1)

Frequency separations:
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Neutrinos and helioseismology
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Bahcall (1989; Neutrino Astrophysics)



The Birmingham Solar Oscillations
Network (BiSON)

Mount Wilson
Calilornia, USA




Neutrinos and low-degree
helioseismology

)  Our results agree with standard solar models®’, and
seem to remove the need for significant mixing®™” or weakly inter-
acting massive particles (WIMPS)'"'! in the core, both of which
have been advanced to explain the low measured flux of solar
neutrinos'*'?. This suggests that the solar neutrino problem must
be resolved within neutrino physics, not solar physics; neutrino
oscillations and a finite neutrino mass form a possible explanation.

Elsworth et al. (1990; Nature 347, 536)



Power

foa

8o

&0

40

Neutrinos and low-degree
helioseismology
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Neutrinos and low-degree
helioseismology
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Neutrinos and low-degree

5 (pHz)

helioseismology
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Gradient (pHz)
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Neutrinos and low-degree
helioseismology
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Caveat

Oscillation frequencies depend on sound
speed ¢ and density p

Neutrino flux depends mainly on temperature

T and u cannot be determined separately



Rays of higher-degree modes







Observed frequencies
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What is wrong with the

solar model?
Structure inversion

Frequency differences between Sun and model:
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Combine the frequency differences

Zcz (ro) (Sw@ = ZC”' rof K/Lz

—I—ZcZ ’ro/ pcz
+Zc@ r0)Q; G (w; +Zc@ ro)€i

r)dr

(r)dr



Combine the frequency differences

Choose coefficients to isolate, as far as possible, &,.c?
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Estimate of (averaged) sound-speed
correction




Result: Sun - model
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Model S: C-D et al. (1996; Science 272, 1286)
Including diffusion and settling of helium and heavy elements
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Are Standard Solar Models Reliable?
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The sound speeds of solar models that include element diffusion agree with helioseismological
measurements to a rms discrepancy of better than 0.2% throughout almost the entire Sun. Models
that do not include diffusion. or in which the interior of the Sun is assumed to be significantly
mixed, are effectively ruled out by helioseismology. Standard solar models predict the measured
properties of the Sun more accurately than is required for applications involving solar neutrinos.
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The sound speeds of solar models that include element diffusion agree with helioseismological
measurements to a rms d15r31ep5111cv of better than 0.2% throughout almost the entire Sun. Models
that do not i ' r a-significantly
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Standard solar models predict the measured properties
of the Sun more accurately than is required for applications
Involving solar neutrinos.



Mixing or switching off SHe + *He
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Errors in helioseismic inferences
in determinations of solar structure

1. Observational errors

2. Departures from linearity in the relation
oetween frequency and structure differences

3. Dependence on reference model

— Systematic errors in reference model



Errors in helioseismic inferences
in determinations of solar structure

1. Observational errors

2. Departures from linearity in the relation
oetween frequency and structure differences

3. Dependence on reference model

— Systematic errors in reference model

Note: in differences inferred from inversion
only 1. and 2. matter



Errors in structure differences
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Effects of reference
model on inferred
solar sound speed
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A new problem: revised solar
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Summary

e 1990 —: Models modified to reduce neutrino
flux essentially ruled out by helioseismology

e 1995 — : ‘Standard’ solar models are
confirmed by helioseismology, particularly for
the core structure

e Status: With well-determined neutrino
properties helioseismology and neutrinos are
truly complementary




Conclusion, by Haxton

o “Effectively, the recent progress made on
neutrino mixing angles and mass differences has
turned the neutrino into a well-understood

probe of the Sun.

* We now have two precise tools, helioseismology
and neutrinos, that can be used to see into the

solar interior.

* We have come full circle: The Homestake
experiment was to have been a measurement of
the solar core temperature, until the solar
neutrino problem intervened.”

Haxton et al. (2013; ARAA 51, 21)



