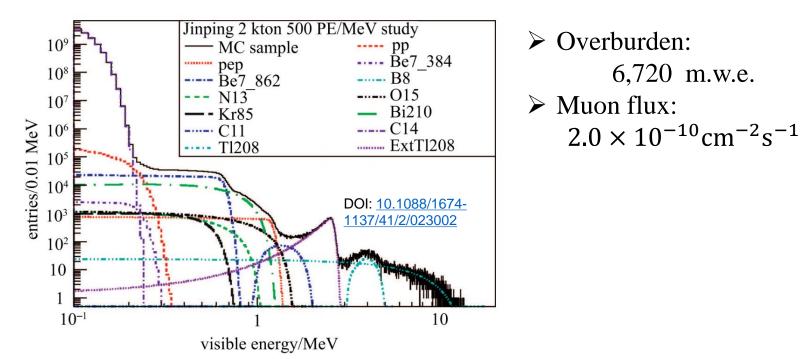
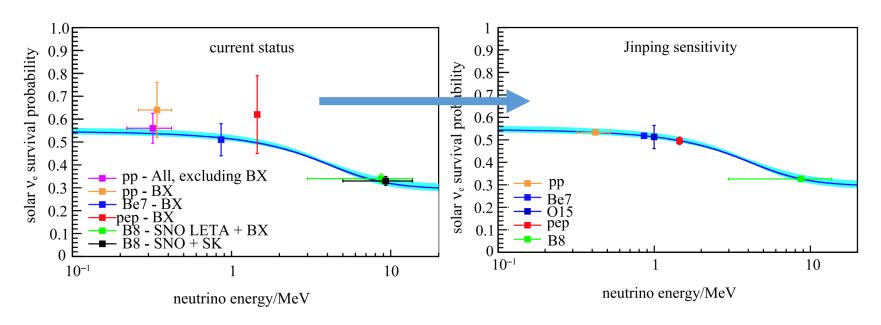

Jinping, and the solar neutrinos


WAN, Linyan On behalf of the Jinping Collaboration Tsinghua University

Solar neutrino signals

2018/06/14

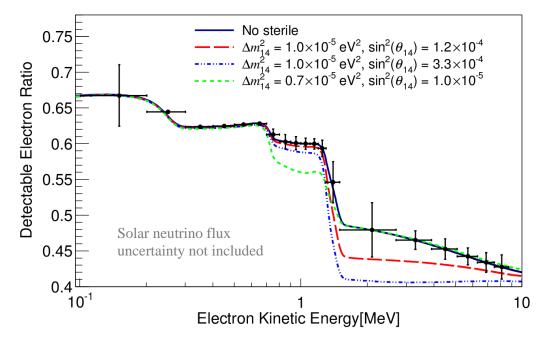
Backgrounds at Jinping


≻ Internal radioactivity bkg (²¹⁰Bi etc.): same level as Borexino-II.

- External radioactivity bkg (²⁰⁸Tl etc.): scaled to the surface area from Borexino-II. Exponential approximation for attenuation in buffer.
- > Spallation induced bkg (^{11}C etc.): scaled to the Jinping muon rate.

Sensitivities from a fast simulation

			energ	energy resolution/PE/MeV				
Statistics: 5 years live			200	500	1000			
time.		$\mathbf{p}\mathbf{p}$	0.02	0.007	0.005			
	fiducial	$^{7}\mathrm{Be}$	0.007	0.006	0.005			
150	mass	\mathbf{pep}	0.07	0.05	0.04			
¹⁵ O sensitivity here	1000 ton	^{13}N	NA	0.5 (NA)	0.3(0.4)			
refers to ${}^{15}\text{O} + {}^{17}\text{F}$ flux.		^{15}O	0.3	0.2(0.4)	0.1(0.2)			
		^{8}B	0.02	0.02	0.02			
A conservative		$\mathbf{p}\mathbf{p}$	0.01	0.005	0.004			
	fiducial	$^{7}\mathrm{Be}$	0.005	0.004	0.004			
systematics assumption	mass	\mathbf{pep}	0.06	0.03	0.03			
at 1.5%.	2000 ton	^{13}N	0.4	0.3	0.2(0.3)			
		^{15}O	0.2	0.1	0.08(0.1)			
		^{8}B	0.02	0.02	0.02			
Finally decided at 500		$\mathbf{p}\mathbf{p}$	0.01	0.004	0.003			
<pre>p.e./MeV with 2 kton fiducial.</pre>	fiducial	$^{7}\mathrm{Be}$	0.004	0.003	0.003			
	mass	\mathbf{pep}	0.04	0.03	0.02			
	4000 ton	^{13}N	0.3	0.2(0.3)	0.2(0.3)			
DOI: 10.1088/1674-1137/41/2/023002		^{15}O	0.1 (0.2)	0.07(0.1)	0.06(0.09)			
2 0 <u></u>		^{8}B	0.01	0.01	0.01			

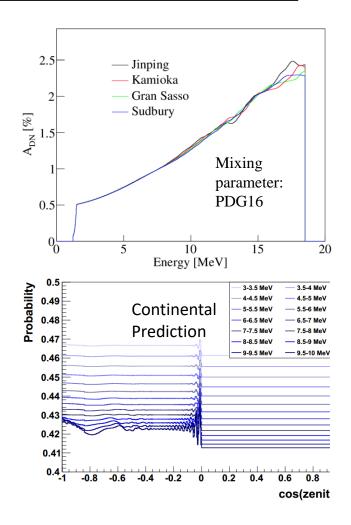

Solar upturn

Transition of oscillation probability from the matter-governed region to the vacuum-like region.

Precise measurement of solar neutrinos will constrain the upturn. The contribution of Jinping would be significant in the constraint on low energy electrons from B8 neutrinos.

Sterile neutrino sensitivity

A 4th generation of **sterile neutrino** indicates an **additional resonance** inside the Sun, and the upturn shape changes for different mixing parameter sets.


Jinping will be sensitive to exclude a large parameter space for sterile neutrinos.

Day-night asymmetry

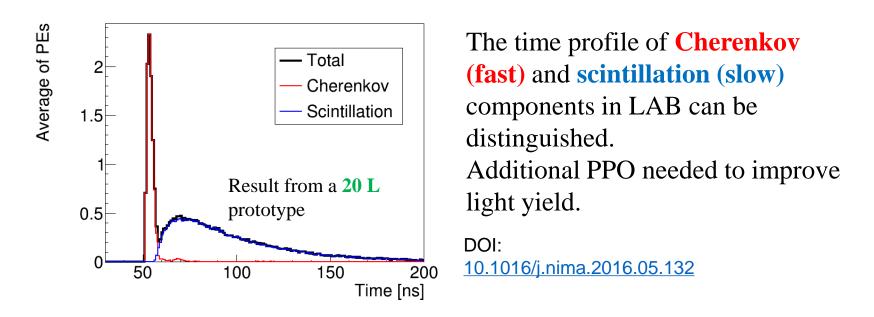
Experiment	Measurement
SK ^[1]	$(-3.2 \pm 1.1 \pm 0.5)\%$
SNO ^[2] , Borexino ^[3]	Within 1σ to null hypothesis
Global ^[4]	~2%

- ➤ The day/night asymmetry is sensitive to Δm²₂₁ and the density profile of Earth surface near the detector.
- The statistics of B8 at Jinping in 5 years is not sufficient for a conclusive measurement.

[1] Phys. Rev. Lett. 112, 091805 (2014)
[2] Phys. Rev. C72. 72. 055502 (2005)
[3] Phys. Rev. D89. 11. 112007 (2014)
[4] Eur. Phys. J. A52 (2016)

Solar angle cut

- Cherenkov detector can suppress backgrounds by solar angle. However, a low energy Cherenkov ring is smeared due to multiple scattering.
- Scintillator light does not contain direction information, and thus cannot use solar angle cut.


Vertex: scintillation light

Higher light yield, thus higher precision.

Energy: scintillation light

- Correlated
- Lower energy threshold, thus better linearity.
- Direction: Cherenkov light
 - Using scintillation light to provide vertex, solar angle can be better reconstructed. The S/B ratio is expected to be enhanced by ~1.5 for 1.6 MeV electron with a loose forwardness angle cut.

Jinping: Cherenkov + scintillation

A larger prototype of **1 ton** with 15% coverage is being tested in-situ, with energy resolution at ~**100 p.e./MeV**.

The goal for energy resolution is **500 p.e./MeV**, achievable with 80% coverage and 15 m attenuation length.

A fast energy response model

A generic light yield model can be written as:

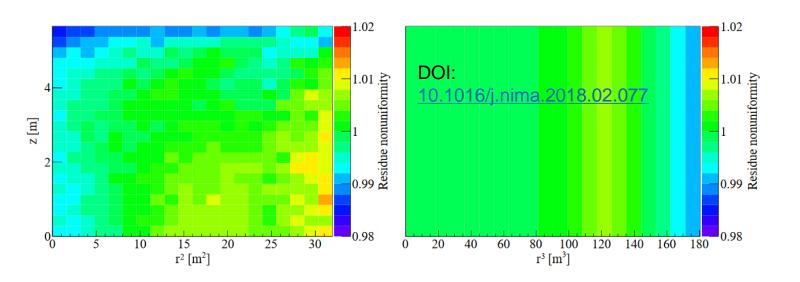
$$E_{obs}(\vec{x}, E_{init}, E_{dep}) = E_0 \cdot R \cdot C(\vec{x})T(\vec{x}) \cdot [Y_s + f Y_C] (E_{init}, E_{dep})$$
Coverage
Optical response
Light yield
When transforming
into momentum, the
 m_k set is only
dependent on
detector geometry.
 $T(\vec{x}) = 1 + \sum_{k=1}^{\infty} \left(-\frac{1}{L}\right)^k m_k(\vec{x}), \quad \frac{dY_s}{dx} = A \frac{dE/dx}{1 + k_B \cdot dE/dx}, \\ \frac{d^2Y_C}{dxd\lambda} = \frac{2\pi\alpha q^2}{\lambda^2} \left(1 - \frac{1}{\beta^2 n^2(\lambda)}\right)$

This is a **fast** analytical model accommodating time variation naturally.

DOI: 10.1016/j.nima.2018.02.077

Conclusion

- The proposed Jinping experiment will have the low spallation background, large volume, and good energy resolution required for the detection of CNO and precise measurement of other solar neutrinos.
- Jinping will be able to exclude a large parameter space for sterile neutrino and constrain solar upturn.
- Cherenkov + scintillation detection mode has been developed, enabling solar cut to enhance S/B ratio.
- ➤ A fast detector response model to control energy systematic uncertainty has been constructed.


Back up

Signal/background estimation

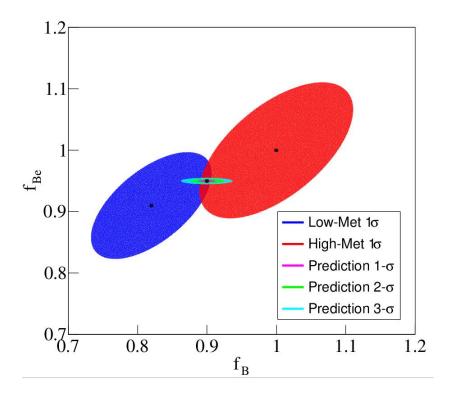
	\max	$_{\rm time}$	resolution/	$^{14}\mathrm{C}$	85 Kr	$^{210}\mathrm{Bi}$	^{11}C	^{10}C	$^{208}\mathrm{Tl}$	$^{11}\mathrm{Be}$	$Ext^{-208}Tl$	
	100 ton	day	$\rm PE/MeV$	/counts/day/100 ton								
Borexino-I ⁷ Be	0.7547	740.7	500	3.46×10^6	31.2	41.0	28.5	0.62	0.084	0.032	2.52	
Borexino-I pep	0.7130	290.2	500	3.46×10^6	31.2	41.0	2.48	0.18	0.084	0.032	2.52	
Borexino-I ⁸ B	1	345.3	500	3.46×10^6	31.2	41.0	28.5	0.62	0.084	0.032	2.52	
Borexino-II ⁷ Be	0.7547	1480	500	3.46×10^6	1	25.0	28.5	0.62	0.084	0.032	2.52	
Borexino-II pep	0.7130	580	500	3.46×10^6	1	25.0	2.48	0.18	0.084	0.032	2.52	
Borexino-II ⁸ B	1	690	500	3.46×10^6	1	25.0	28.5	0.62	0.084	0.032	2.52	
SNO+	5	1500	1000	3.46×10^6	1	25.0	0.29	0.0062	0.084	0.00032	1.47	
Jinping	scan	1500	scan	3.46×10^{6}	1	25.0	0.15	0.0031	0.084	0.00016	1.17	
electron event		>0 keV (GS98)		>0 keV (AGS09)			>200 keV (GS98)				>200 keV (AGS09)	
rate $/day/100$ ton		high metallicity		low metallicity		high metallicity				low metallicity		
рр	132.59 ± 0.80		133.70 ± 0.80		4.557 ± 0.027				4.595 ± 0.028			
$^{7}{ m Be} \ (0.38 \ { m MeV})$	1.93 ± 0.13		1.76 ± 0.12		0.228 ± 0.016				0.208 ± 0.015			
$^{7}{ m Be}~(0.86~{ m MeV})$		46.9 ± 3.3		42.8 ± 3.0		31.6 ± 2.2			28.8 ± 2.0			
pep	2.735 ± 0.033		2.792 ± 0.034		2.244 ± 0.027			2.291 ± 0.028				
^{13}N	2.45 ± 0.34		1.80 ± 0.25			1.48 ± 0.21			1.09 ± 0.15			
^{15}O	2.78 ± 0.42		1.95 ± 0.29		2.03 ± 0.31			1.42 ± 0.21				
$17_{ m F}$	0.069 ± 0.012		0.0426 ± 0.0072		0.0506 ± 0.0086			0.0312 ± 0.0053				
^{8}B	0.443 ± 0.062		0.364 ± 0.051		0.427 ± 0.060			0.351 ± 0.049				
hep		0.0009 ± 0.0003		0.0009 ± 0.0003			0.0009 ± 0.0003			0.0009 ± 0.0003		

DOI: <u>10.1088/1674-1137/41/2/023002</u>

Residual systematics

This model can be easily applied to **different geometric setups** and **multi-volume scintillator detectors**, such as Daya Bay, KamLAND-Zen, and the 2-tank setup Jinping detector.

From a full simulation, the residual systematics after the correction from the fast energy response model for the cylindrical (left) and spherical (right) setup are **0.28%** and **0.26%**, respectively.


(w/o other correction or volume cut.)

2018/06/14

Metallicity

Jinping has 7.6 ~ 9.6 σ sensitivities with the fixed input of present mixing angles, w/o consideration of theoretical uncertainties in high/low metallicity model.

9.6 σ assuming no correlation between fluxes, and 7.6 σ assuming fully correlation between ⁷Be and ⁸B.

