Contribution ID: 55 Type: Poster

New direct measurement of the 6Li(p,gamma)7Be cross section at LUNA

Monday 11 June 2018 16:50 (10 minutes)

The $^6\text{Li}(p,\gamma)^7$ Be reaction is involved in many astrophysical scenario, ranging from Big Bang Nucleosynthesis to pre-main sequence stellar evolution and solar neutrino.

At astrophysical energies, proton capture on ^6Li proceeds through the $^6\text{Li}(p,\alpha)^3\text{He}$ and the $^6\text{Li}(p,\gamma)^7\text{Be}$ reactions.

The $^6\text{Li}(p,\alpha)^3\text{He}$ cross section is well known from the literature, but the measured angular distribution can only be explained introducing positive parity excited states of ^7Be in addition to the known negative parity levels.

Although the existence of positive parity excited states in ^7Be has never been confirmed experimentally, a recent measurement of the $^6\text{Li}(p,\gamma)^7\text{Be}$ cross section revealed a resonance-like structure at center of mass energy of 195 keV. The observed S-factor could be reproduced introducing a new ^7Be excited state with E \approx 5800 keV and $J^\pi = (1/2^+, 3/2^+)$.

The existence of such excited state might also affect the cross section of the ${}^{3}\text{He}({}^{4}\text{He},\gamma){}^{7}\text{Be}$ reaction and, consequently, the estimated flux of ${}^{7}\text{Be}$ solar neutrino.

A new measurement of the 6 Li(p, γ) 7 Be cross section at proton energies between 50 and 400 keV has been performed at the Laboratory for Underground Nuclear Astrophysics. The poster provides a description of the experimental setup and shows preliminary results of the data analysis.

Primary author: Dr DEPALO, Rosanna (INFN - Sezione di Padova)

Presenter: Dr DEPALO, Rosanna (INFN - Sezione di Padova)

Session Classification: Poster Session