Search for direct stop quark production in semi-leptonic $t\bar{t}$ events at ATLAS

Daniela Börner

ATLAS EXPERIMENT

Physics at the Terascale – 28.11.2017

BMBF-Forschungsschwerpunkt

ATLAS-EXPER

GEFÖRDERT VOM Bundesministeriu für Bildung und Forschung

Daniela Börner (Uni Wuppertal)

UNIVERS

stop search $1\ell + E_T^{miss}$

vsik bei höchsten Energien mit dem ATLAS-Experiment am LH

Terascale – 28.11.2017

FSP

03

1 / 20

Search for direct stop quark production in semi-leptonic $t\bar{t}$ events

- Introduction and Motivation
- Q Event Selection
- Background Estimate
- Results

Based on publication: [ATLAS-CONF-2017-037]

Stop Quarks

search for direct stop quark production, stop decays into LSP

- Bino LSP
 - decay via ${ ilde t} o t { ilde \chi}_1^0$
 - intermediate to high stop quark masses (tN_med and tN_high)
- O Higgsino LSP
 - 3 light states for $\tilde{\chi}_1^0$, $\tilde{\chi}_2^0$ and $\tilde{\chi}_1^\pm$
 - stop can decay in all 3 states
 - small mass splitting between $\tilde{\chi}_1^\pm$ and $\tilde{\chi}_1^0 \Rightarrow \tilde{\chi}_1^\pm \to W^* \tilde{\chi}_1^0$ with low momentum objects
 - dedicated soft lepton selections (bC_soft)

Signal Selection – tN

 \rightarrow dominated by di-leptonic $t \overline{t}$

- dominant background: $t\bar{t}$, W+jets, $t\bar{t} + V$, single top
- semi-leptonic and di-leptonic $t\bar{t}$ differ \rightarrow split $t\bar{t}$ into 1L and 2L

- discriminant variables: $E_{\rm T}^{\rm miss}$, am_{T2} , $m_{\rm T}$, $\Delta R(b,\ell)$, reco. top mass
- ightarrow design two signal regions
 - tN_high: single bin
 - tN_med: 4 $E_{\rm T}^{\rm miss}$ bins

Daniela Börner (Uni Wuppertal)

stop search $1\ell + E_T^{miss}$

Terascale - 28.11.2017 4 / 20

Signal Selection – bC_soft

- dominant background: $t\overline{t}$, W+jets and single top
- *t*t̄ mainly semi-leptonic events
- discriminant variables: $E_{\rm T}^{\rm miss}$, $m_{\rm T}$, $p_{\rm T}^W$, lepton $p_{\rm T}/E_{\rm T}^{\rm miss}$, am_{T2}
- selection orthogonal to tN regions due to $m_{\rm T}$ cut
- $\rightarrow\,$ three signal regions, shape fit in lepton ${\it P_T}/{\it E_T^{\rm miss}}$

Background Estimate – tN

- define orthogonal regions
 - similar cuts to SR to ensure similar kinematics
 - invert some cuts to enrich specific background processes
- CRs: used in simultaneous fit to estimate data-driven normalisation
- VRs: not part of the fit, only for validation
- $t\overline{t} + Z$: normalisation estimated in a dedicated 3L selection

350 400 450

Background Estimate – tN

stop search $1\ell + E_{m}^{miss}$

- Data

tt 1L

Total SN

Single top

550

am_{T2} [GeV]

W+jets

 1.08 ± 0.21

W+iets

Others

Background Estimate

Background Estimate

BERGISCHE UNIVERSITÄT WUPPERTAL

- similar approach for bC_soft regions
 - combined $t\bar{t}$, as dominated by semi-leptonic $t\bar{t}$
 - keep p_{T}^W constant to ensure same kinematic behaviour
 - invert am_{T2} , lepton $p_{\rm T}/E_{\rm T}^{\rm miss}$, number of *b*-tagged jets
 - good modelling in CRs

Background Validation

Events / 20 GeV

Data / SM

- overall good agreement in the various VR for all SRs
- test extrapolation of the background estimate from CR to SR

Systematic Uncertainties

ATLAS Work in progress	tN_med
total background expectation	36.31
total statistical $(\sqrt{N_{\rm exp}})$ total background systematic	±6.03 ±6.61 [18.21%]
$\begin{array}{c} \mu_{t\bar{t}}+V\\ t\bar{t}+V \mbox{ modelling}\\ \mu_{t\bar{t}} 2L\\ t\bar{t} +V \mbox{ modelling}\\ \mu_{t\bar{t}} 2L\\ t\bar{t} \mbox{ radiation}\\ t\bar{t} \mbox{ MC stat. (nominal samples)}\\ \mu_{single top}\\ jet \mbox{ energy resolution}\\ jet \mbox{ energy scale (1st component)}\\ pileup \mbox{ reweighting}\\ \mu_{W+jets}\\ t\bar{t} \mbox{ fragmentation}\\ flavour \mbox{ tagging c-jet mistag rate}\\ flavour \mbox{ tagging light-jet mistag rate}\\ diboson \mbox{ cross-section}\\ diboson \mbox{ modelling} \end{array}$	$\begin{array}{c} \pm 4.00 \ [11.0\%] \\ \pm 3.83 \ [10.6\%] \\ \pm 1.70 \ [4.7\%] \\ \pm 1.55 \ [4.3\%] \\ \pm 1.55 \ [4.3\%] \\ \pm 1.28 \ [3.5\%] \\ \pm 1.28 \ [3.5\%] \\ \pm 1.01 \ [2.8\%] \\ \pm 1.01 \ [2.8\%] \\ \pm 0.92 \ [2.5\%] \\ \pm 0.92 \ [2.5\%] \\ \pm 0.92 \ [2.5\%] \\ \pm 0.83 \ [2.3\%] \\ \pm 0.83 \ [2.3\%] \\ \pm 0.43 \ [2.3\%] \\ \pm 0.43 \ [1.2\%] \\ \pm 0.44 \ [1.1\%] \end{array}$

- systematic uncertainties as nuisance parameter in profile likelihood fit
- similar size for statistical and systematic uncertaintiy
- dominant theoretical uncertainty: tt + V modelling
 - dominant background
- dominant experimental uncertaintiy: jet energy resolution
 - influences m_T resolution

Results – VRs and SRs

- $\bullet~VR$ and SR for tN_med and tN_high
- largest differences: T2LV for tN_med, WVR for tN_high
- overall good agreement in VRs
- small excess in tN_med and tN_high, but not significant

Results – VRs and SRs

- VR and SR for bC_soft regions
- largest differences: STVR_high, WVR_med
- overall good agreement in VRs
- small excess in bCsoft_med and bCsoft_diag, but not significant

BERGISCHE UNIVERSITÄT WUPPERTAL

- exclusion fits: using shape information
- $E_{\rm T}^{\rm miss}$ shape for tN_med
- lepton $P_{\rm T}/E_{\rm T}^{\rm miss}$ shape for the bC_soft regions

• exclusion limits using all regions in analysis

- additional regions will be covered in the next talk
- ullet stop quark masses are excluded to 950 GeV for massless neutralinos
- $\bullet\,$ for intermediate stop quark masses (around 800 ${\rm GeV})$: neutralino masses up to 320 ${\rm GeV}$ excluded

Daniela Börner (Uni Wuppertal)

Combination

Higgsino LSP: mixture of $\tilde{t} \to t \tilde{\chi}_1^0$, $\tilde{t} \to t \tilde{\chi}_2^0$ and $\tilde{t} \to b \tilde{\chi}_1^{\pm}$ possible

- tN regions sensitive to $\tilde{t} \to t \tilde{\chi}_1^0$, $\tilde{t} \to t \tilde{\chi}_2^0$
- soft lepton regions sensitive to ${ ilde t} o b { ilde \chi}_1^\pm$
- \Rightarrow statistical combination of tN_med with the three soft lepton regions
 - SR orthogonal (due to m_T requirement), overlap in CRs removed
- small tan β : similar to tN reach, as 90% decay into $t\tilde{\chi}_{1,2}^0$
- right-handed decay: mainly $b\tilde{\chi}_1^{\pm}$, sensitivity from soft lepton selection
- large tan β: equivalent BRs, largest gain with the combination

Summary and Outlook

- presented search strategy and results for
 - tN signal regions for Bino LSP at intermediate and high stop quark masses
 - soft lepton selection for Higgsino LSP
 - combination of these selections to be sensitive to Higgsino mixtures
- no significant excess observed
 - exclusion limits for Bino and Higgsino LSP models
- further signal regions and more interpretations
 - $\rightarrow\,$ covered in the next talk

Selection -tN

	tN_med	T1LCR/VR	T2LCR/VR	WCR/VR	STCR		
Preselection	high- E_{T}^{miss} preselection						
Number of (jets, b-tags)	$(\geq 4, \geq 1)$	$(\geq 4, \geq 1)$	$(\geq 4, \geq 1)$	$(\geq 4, \geq 1)$	$(\geq 4, \geq 2)$		
Jet p_T [GeV]	> (60, 50, 40, 40)						
E_T^{miss} [GeV]	> 250						
$E_{T,\perp}^{miss}$ [GeV]	> 230						
$m_{\rm T}$ [GeV]	> 160	[30, 90] / [90, 120]	> 120	[30, 90] / [90, 120]	[30, 120]		
H _{T,sig}	> 14	> 10	> 10	> 10	> 10		
m ^{reclustered} [GeV]	> 150	> 150	top veto $/ > 150$	top veto	top veto		
am_{T2} [GeV]	> 175	< 200	< 200 / < 130	> 200	> 200		
$\Delta R(b, \ell)$	< 2.0	-	_	_	-		
$\Delta R(b_1, b_2)$	-	_	-	< 1.2	> 1.2		
lepton charge	-	_	-	+1	-		
$ \Delta \phi(j_{1,2}, \vec{p}_T^{\text{miss}}) $			> 0.4				
m_{T2}^{τ} based τ -veto [GeV]			> 80				
	tN_high	T1LCR/VR	T2LCR/VR	WCR/VR	STCR		
Preselection			high- E_T^{miss} preselection				
Number of (jets, b-tags)	$(\geq 4, \geq 1)$	$(\geq 4, \geq 1)$	$(\geq 4, \geq 1)$	$(\geq 4, \geq 1)$	$(\geq 4, \geq 2)$		
Jet p_T [GeV]	>(100, 80, 50, 30)						
E_T^{miss} [GeV]	> 550	> 350	> 350	> 350	> 350		
m_T [GeV]	> 160	[30, 90] / [90, 120]	> 120	[30, 90] / [90, 120]	[30, 120]		
$H_{T,sig}^{miss}$	> 27	> 10	> 10	> 10	> 10		
m ^{reclustered} [GeV]	> 130	> 130	top veto $/ > 130$	top veto	top veto		
am_{T2} [GeV]	> 175	< 200	< 200 / < 130	> 200	> 200		
$\Delta R(b, \ell)$	< 2.0	_	-	_	-		
$\Delta R(b_1, b_2)$	-	-	-	< 1.2	> 1.2		
lepton charge	-	-	-	$^{+1}$	-		
$ \Delta \phi(j_{1,2}, \vec{p}_{T}^{miss}) $	> 0.4						
m_{T2}^{τ} based τ -veto [GeV]	> 80						

Daniela Börner (Uni Wuppertal)

stop search $1\ell + E_{\mathrm{T}}^{\mathrm{miss}}$

Terascale – 28.11.2017

17 / 20

Selection – bCsoft_diag

	bCsoft_diag/bffN	TCR/VR	WCR/VR
Preselection		soft-lepton preselection	
Number of (jets, b-tags)	$(\geq 2, \geq 1)$	$(\geq 2, \geq 1)$ $(\geq 2, \geq 1)$	
Jet p_T [GeV]		(120, 25)	
E_T^{miss} [GeV]		> 300	
m_T [GeV]	< 50 / < 160	< 160	< 160
$p_T^{\ell}/E_T^{\text{miss}}$	< 0.02	[0.03, 0.10] / < 0.03	[0.03, 0.10] / < 0.03
$m_{top}^{reclustered}$ [GeV]	top veto	> 150	top veto
$\min(\Delta \phi(\vec{p}_T^{miss}, b\text{-jet}_i))$	< 1.5	< 1.5	> 1.5
$ \Delta \phi(j_{1,2}, \vec{p}_T^{miss}) $		> 0.4	

Backup

Selection – bCsoft_med and high

BERGISCHE UNIVERSITÄT WUPPERTAL

	bCsoft_med	TCR/VR	WCR/VR	STCR/VR	
Preselection	soft-lepton preselection				
Number of (jets, b-tags)	$(\geq 3, \geq 2)$	$(\geq 3, \geq 2)$	$(\geq 3, = 1)$	$(\geq 3, \geq 2)$	
Jet p_T [GeV]	>(120, 60, 40, 25)				
b-tagged jet p_T [GeV]	> (120, 60)	> (120, 60)	> 120	> (120, 60)	
E_T^{miss} [GeV]			> 230		
m_T [GeV]			> 160		
p_T^W [GeV]	> 400				
p_T^{ℓ}/E_T^{miss}	< 0.03	> 0.03 / < 0.03	> 0.20 / [0.1, 0.2]	> 0.20 / [0.1, 0.2]	
am_{T2} [GeV]	> 200	< 200	> 200	> 200	
$\min(\Delta \phi(\bar{p}_T^{miss}, b\text{-jet}_i))$	> 0.8	-	[0.8, 2.5]	> 0.8	
$\Delta R(b_1, b_2)$	-	-	-	> 1.2	
$ \Delta \phi(j_{1,2}, \vec{p}_T^{\text{miss}}) $	> 0.4				
	bCsoft_high	TCR/VR	WCR/VR	STCR/VR	
Preselection		soft-lep	ton preselection		
Number of (jets, b-tags)	$(\geq 2, \geq 2)$	$(\geq 2, \geq 2)$	$(\geq 2, = 1)$	$(\geq 2, \geq 2)$	
Jet p_T [GeV]	>(100, 100)				
b -tagged jet p_T [GeV]	>(100, 100)				
E_{T}^{miss} [GeV]		> 230			
m_T [GeV]	> 160				
p_T^W [GeV]	> 500				
p_T^{ℓ}/E_T^{miss}	< 0.03	> 0.10 / < 0.10	[0.1, 0.4] / < 0.10	> 0.30 / [0.1, 0.3]	
am_{T2} [GeV]	> 300	< 300	> 300	> 300	
$\min(\Delta \phi(\bar{p}_T^{miss}, b\text{-jet}_i))$	> 0.4				
$\Delta R(b_1, b_2)$	> 0.8	> 0.8	-	> 0.8	
$\Delta R(b, \ell)$	-	_	> 0.8	-	
$ \Delta \phi(j_{1,2}, \vec{p}_T^{\text{miss}}) $	> 0.4				

Backup

Higgsino exclusion – Δm

