Dark Matter at the ILC: Mono-Photon and SUSY Searches

Moritz Habermehl, Mikael Berggren, Suvi-Leena Lehtinen, Jenny List

Deutsches Elektronen-Synchrotron DESY

11th Annual Meeting of the Helmholtz Alliance "Physics at the Terascale"

HELMHOLTZ RESEARCH FOR GRAND CHALLENGES 28 November 2017

The International Linear Collider

- a future electron positron collider
 - mature technology
 - waiting for political decision in Japan
- centre-of-mass energy: 250 500 GeV (upgrade: 1 TeV)
- $\mathcal{L} = 1.8 \cdot 10^{34} \text{cm}^{-2} \text{s}^{-1}$ (upgrade: $3.6 \cdot 10^{34} \text{cm}^{-2} \text{s}^{-1}$)
- polarised beams: $P(e^-) = \pm 80\%$, $P(e^+) = \pm 30\%$
- 2 detectors: SiD and International Large Detector (ILD)

- 1. General search: mono-photon channel
 - · Limits in the framework of effective operators
 - Comparison to LHC
- 2. Supersymmetry
 - fitting SUSY parameters to observables
 - does WIMP candidate really explain dark matter ?

General search: mono-photon

Moritz Habermehl | Dark Matter at the ILC | Terascale Annual Meeting | 28 Nov 2017 |

General search: mono-photon

• Signal

- WIMP pair production with a photon from initial state radiation $a^+a^$
 - $e^+e^-
 ightarrow \chi \chi \gamma$
- quasi model-independent
- single photon in an "empty" detector
 - \rightarrow missing four-momentum
- observables: E_{γ} , θ_{γ}

• Main Background Processes

- Neutrino pairs $e^+e^-
 ightarrow
 u ar{
 u} \gamma$
 - irreducible
 - polarisation: enhance or suppress
- Bhabha scattering $e^+e^- \rightarrow e^+e^-\gamma$
 - huge cross section
 - cross section rises for low polar angles
 - mimics signal if leptons in forward region are undetected

Moritz Habermehl | Dark Matter at the ILC | Terascale Annual Meeting | 28 Nov 2017

General search: mono-photon

• Signal

- WIMP pair production with a photon from initial state radiation
 - $e^+e^-
 ightarrow \chi \chi \gamma \gamma$
- quasi model-independent
- single photon in an "empty" detector
 - \rightarrow missing four-momentum
- observables: E_{γ} , θ_{γ}
- Main Background Processes
 - Neutrino pairs $e^+e^- \rightarrow \frac{\nu\bar{\nu}\gamma\gamma\gamma\gamma}{\nu\bar{\nu}\gamma\gamma\gamma\gamma}$
 - irreducible
 - polarisation: enhance or suppress
 - Bhabha scattering $e^+e^- \rightarrow \frac{e^+e^-\gamma\gamma\gamma}{2}$
 - huge cross section
 - cross section rises for low polar angles
 - mimics signal if leptons in forward region are undetected

Moritz Habermehl | Dark Matter at the ILC | Terascale Annual Meeting | 28 Nov 2017

Effective operators

6

Moritz Habermehl | Dark Matter at the ILC | Terascale Annual Meeting | 28 Nov 2017 |

Theoretical Framework: Effective Operators

OK at ILC since
$$\Lambda \gg \sqrt{s}$$

construct minimal effective Lagrangian

• assumption:

new physics interaction is mediated by a heavy particle

- interaction can be integrated out
- four-point contact interaction
- \Rightarrow general approach
- \Rightarrow only one parameter ("energy scale of new physics")

 $\Lambda = M_{mediator} / \sqrt{g_f g_{\chi}}$

Sensitivities for effective operators

- 3σ exclusion limits
- Λ as a function of M_{χ}
- M_{χ} up to $\sqrt{s}/2$ can be tested
- $\sigma \propto 1/\Lambda^4$

setup and cross-sections formulas from Chae and Perelstein JHEP05(2013)138

vector	$(\overline{f}\gamma^{\mu}f)(\overline{\chi}\gamma_{\mu}\chi)$	$\sigma_{LR} = \sigma_{RL}$	$\sigma_{LL} = \sigma_{RR} = 0$
axial-vector	$(\overline{f}\gamma^{\mu}\gamma^{5}f)(\overline{\chi}\gamma_{\mu}\gamma_{5}\chi)$	$\sigma_{LL} = \sigma_{RR}$	$\sigma_{LR} = \sigma_{RL} = 0$
scalar (s-channel)	$(\overline{f}f)(\overline{\chi}\chi)$	$\sigma_{LL} = \sigma_{RR}$	$\sigma_{LR} = \sigma_{RL} = 0$

Role of polarisation

- background
 - neutrinos can be suppressed for right-handed e⁻ and left-handed e⁺

N _{500fb⁻¹}	unpolarised	$P_{e-} = +80\%$ $P_{e+} = -30\%$
$\nu\nu\gamma$	3761	820
$e^+e^-\gamma$	187	187

WIMPs

- production can be enhanced
- · chirality of interaction can be tested

Moritz Habermehl | Dark Matter at the ILC | Terascale Annual Meeting | 28 Nov 2017 | 9

- extrapolation of sensitivity from full simulation at 500 GeV
 - reachable Λ at different \sqrt{s} and integrated luminosities
 - for small M $_\chi$ (< 100 GeV)
 - allows to give estimates for sensitivity
 - for different time scales
 - for different running scenarios
- already at 250 GeV new phase space can be explored
 - centre-of mass energy (slightly) higher than at LEP
 - more luminosity
 - polarisation

- extrapolation of sensitivity from full simulation at 500 GeV
 - reachable Λ at different \sqrt{s} and integrated luminosities
 - for small M $_\chi$ (< 100 GeV)
- allows to give estimates for sensitivity
 - for different time scales
 - for different running scenarios
- already at 250 GeV new phase space can be explored
 - centre-of mass energy (slightly) higher than at LEP
 - more luminosity
 - polarisation

- extrapolation of sensitivity from full simulation at 500 GeV
 - reachable Λ at different \sqrt{s} and integrated luminosities
 - for small M_{χ} (< 100 GeV)
 - allows to give estimates for sensitivity
 - for different time scales
 - for different running scenarios
- already at 250 GeV new phase space can be explored
 - centre-of mass energy (slightly) higher than at LEP
 - more luminosity
 - polarisation

- extrapolation of sensitivity from full simulation at 500 GeV
 - reachable Λ at different \sqrt{s} and integrated luminosities
 - for small M $_\chi$ (< 100 GeV)
- allows to give estimates for sensitivity
 - for different time scales
 - for different running scenarios
- already at 250 GeV new phase space can be explored
 - centre-of mass energy (slightly) higher than at LEP
 - more luminosity
 - polarisation

ILC vs. LHC

Moritz Habermehl | Dark Matter at the ILC | Terascale Annual Meeting | 28 Nov 2017 | 11

ILC vs. LHC

- mono-X searches
 - \Rightarrow mono-photon, mono-jet (gluon), ...
- complementary
 - \Rightarrow LHC tests couplings to quarks/gluons
 - \Rightarrow ILC tests couplings to leptons
- assumptions need to be made to compare results

Simplified models and effective operators

- at lepton colliders: OK to use effective operators
- at LHC: simplified models

- 3 free parameters
 - mediator mass
 - coupling to SM
 - coupling to DM

• instead of
$$\Lambda = \frac{M_{med}}{\sqrt{g_{SM} \cdot g_{DM}}}$$

Moritz Habermehl | Dark Matter at the ILC | Terascale Annual Meeting | 28 Nov 2017 | 1

Simplified models and effective operators

- at lepton colliders: OK to use effective operators
- at LHC: simplified models

- 3 free parameters \Rightarrow present limits for M_{med} & fix couplings mediator mass
 - coupling to SM $\ \ \Rightarrow 0.25 \rightarrow$ avoid sizeable di-jet production
 - coupling to DM $\ \Rightarrow 1$

• instead of
$$\Lambda = \frac{M_{med}}{\sqrt{g_{SM} \cdot g_{DM}}}$$

Comparing LHC and ILC limits

- recent CMS results for mono-photon WIMP search: arxiv:1706.03794
- vector operator

ILC limits

• assumption:
$$g_{sm}^q = g_{sm}^l$$

• translate into simplified models: $M_{med} = \sqrt{g_{SM} \cdot g_{DM}} \cdot \Lambda = 0.5 \cdot \Lambda$

Comparing LHC and ILC limits

- recent CMS results for mono-photon WIMP search: arxiv:1706.03794
- vector operator

II C limits

• assumption:
$$g_{sm}^q = g_{sm}^l$$

translate into simplified models: $M_{med} = \sqrt{g_{SM} \cdot g_{DM}} \cdot \Lambda = 0.5 \cdot \Lambda$

Moritz Habermehl | Dark Matter at the ILC | Terascale Annual Meeting | 28 Nov 2017 14

Comparing LHC and ILC limits

 recent CMS results for mono-photon WIMP search: arxiv:1706.03794

vector operator

ILC limits

• assumption:
$$g_{sm}^q = g_{sm}^l$$

• translate into simplified models: $M_{med} = \sqrt{g_{SM} \cdot g_{DM}} \cdot \Lambda = 0.5 \cdot \Lambda$

In case of a signal...

Moritz Habermehl | Dark Matter at the ILC | Terascale Annual Meeting | 28 Nov 2017 | 15

- so far: exclusion limits
- if ILC discovers new particle...
 - \Rightarrow measure parameters: mass, chirality of its production
- Does WIMP candidate really explain dark matter ?
 ⇒ predict relic density from collider measurements
 ⇒ compare to cosmological observation (Planck)
- need UV-complete theory
- e.g. supersymmetry: lightest supersymmetric particle (LSP) candidate for dark matter
 - with a (small) number of new particles
 - fitting supersymmetry parameters to observables

Scenario 1: natural supersymmetry

- naturalness and small fine tuning requires higgsino mass parameter μ at the EW scale: $m_Z^2 = 2 \frac{m_{H_d}^2 m_{H_u}^2 \tan^2 \beta}{\tan^2 \beta 1} 2\mu^2$
- $\mu \text{ small} \rightarrow \text{light higgsinos}$

1) Natural SUSY: mass extraction

- $e^+e^- \rightarrow \widetilde{\chi}_1^0 \widetilde{\chi}_2^0$; $\widetilde{\chi}_2^0 \rightarrow \mu^+ \mu^- \widetilde{\chi}_1^0$
- kinematics
 - maximum invariant mass gives the mass splitting
 - maximum of di-muon energy gives masses (since initial state is known)

• mass precisions 0.2% with $4 \, \mathrm{ab}^{-1}$

1) Natural SUSY: relic density fit

- fitting dark matter relic density
 - with observables as input
 - using micrOMEGAs (arxiv1305.0237)

•
$$\Omega_{fit}/\Omega_{Planck} = 0.054 \pm 0.001$$

 \Rightarrow natural SUSY: no good DM candidate
(can be clearly seen - and very precisely!)
 \Rightarrow strong hint that non-SUSY DM
or non thermal producti

or non-thermal production exists

1) Natural SUSY: relic density fit

- fitting dark matter relic density
 - with observables as input
 - using micrOMEGAs (arxiv1305.0237)
- $\Omega_{fit}/\Omega_{Planck} = 0.054 \pm 0.001$ \Rightarrow natural SUSY: no good DM candidate (can be clearly seen - and very precisely!) \Rightarrow strong hint that non-SUSY DM

or non-thermal production exists

⇒ found a WIMP but it's not the dark matter we're looking for

Scenario 2: SUSY with LSP as DM

- study model with lightest supersymmetric particle (LSP) that matches observed density
 - \Rightarrow Can the relic density be determinded

if only a few particles are accessible?

 \Rightarrow Can Planck's precision be reached?

2) DM SUSY: relic density precision

- several assumptions were tested (arXiv:1602.08439 [hep-ph])
 - observation of different particles tested
 - precision on observables varied
 - varied vs. fixed binoness N11 (neutralino mixing known or not)
- conclusions
 - crucial: $m_{\tilde{\chi}_1^0}$ (LSP) and $m_{\tilde{\tau}_1}$
 - 1 TeV particles help (elektroweakino & Higgs sector)
 - higher masses (squarks) irrelevant
 - need 1% precision on LSP mixings and $\widetilde{\tau}$ mixing
- with this → precision from fit: 2%
 → same precision as Planck
- Planck: $\Omega_{CDM}h^2 = 0.1197 \pm 0.0022 \Rightarrow \Delta = 2\%$

2) DM SUSY: relic density precision

- several assumptions were tested (arXiv:1602.08439 [hep-ph])
 - observation of different particles tested
 - precision on observables varied
 - varied vs. fixed binoness N11 (neutralino mixing known or not)
- conclusions
 - crucial: $m_{\tilde{\chi}_1^0}$ (LSP) and $m_{\tilde{\tau}_1}$
 - 1 TeV particles help (elektroweakino & Higgs sector)
 - higher masses (squarks) irrelevant
 - need 1% precision on LSP mixings and $\widetilde{\tau}$ mixing
- with this \rightarrow precision from fit: 2% \rightarrow same precision as Planck
- Omega 0.14 0.12 0.008752 0.1 0.03355 0.08 11 fixed 0.06 111 varied 0.04 0.02 0.85 0.9 0.95 1.05 1.1 Ω/Ω_{true}
- Planck: $\Omega_{CDM}h^2 = 0.1197 \pm 0.0022 \Rightarrow \Delta = 2\%$

Identified WIMP as dark matter constituent

Conclusions

- ILC can explore new phase space
 - testing of couplings to leptons \rightarrow complementary to LHC and direct detection searches
- polarised beams
 - suppression of background and enhancement of WIMP production
 - allow to test the chirality of the interaction
- in the case of a discovery
 - high precision on: mass, cross-section, chirality of the interaction
 - model fits allow determination of relic density with percent precision
 - the ILC can contribute to the verification or falsification of WIMP as thermal dark matter

- Weakly Interacting Massive Particles (WIMPs) are candidates for dark matter
- WIMPs can be searched for
 - directly
 - indirectly
 - at colliders
 - \Rightarrow idea: SM particles \rightarrow WIMP pair production
- singlet-like fermion WIMP (Shigeki Matsumoto et al., arxiv:1604.02230)
- likelihood analysis of
 - Planck, PICO-2L, LUX, XENON100
 - LEP, LHC
 - plus LZ, PICO250 projections
- Can lepton colliders help to probe

the surviving region?

Moritz Habermehl | Dark Matter at the ILC | Terascale Annual Meeting | 28 Nov 2017 | 2

- Weakly Interacting Massive Particles (WIMPs) are candidates for dark matter
- WIMPs can be searched for
 - directly
 - indirectly
 - at colliders

 \Rightarrow idea: SM particles \rightarrow WIMP pair production

- singlet-like fermion WIMP (Shigeki Matsumoto et al., arxiv:1604.02230)
- likelihood analysis of
 - Planck, PICO-2L, LUX, XENON100
 - LEP, LHC
 - plus LZ, PICO250 projections
- Can lepton colliders help to probe

Moritz Habermehl

the surviving region?

- Weakly Interacting Massive Particles (WIMPs) are candidates for dark matter
- WIMPs can be searched for
 - directly
 - indirectly
 - at colliders

 \Rightarrow idea: SM particles \rightarrow WIMP pair production

- singlet-like fermion WIMP (Shigeki Matsumoto et al., arxiv:1604.02230)
- likelihood analysis of
 - Planck, PICO-2L, LUX, XENON100
 - LEP, LHC
 - plus LZ, PICO250 projections
- Can lepton colliders help to probe

the surviving region?

 $\sqrt{s} = 3 \,\text{TeV}$

 m_{γ} (GeV)

 $\sqrt{s} = 500 \,\mathrm{GeV}$

 Weakly Interacting Massive Particles (WIMPs) are candidates for dark matter

SM

- WIMPs can be searched for
 - directly
 - indirectly
 - at colliders
 - \Rightarrow idea: SM particles \rightarrow WIMP pair production

Modelling of signal and background

- generated using WHIZARD 2.2.8
 - $\sqrt{s} = 500 \, \text{GeV}$
 - polarised beams
 - beam spectrum: ILC, TDR
- background:
 - $\bullet \ \nu \bar{\nu} + {\rm n} \gamma$
 - $e^+e^- + n\gamma$ (Bhabha scattering)
- signal: $\chi \chi \gamma$
 - reweight $\nu\bar{\nu}\gamma$ according to WIMP mass, spin, ...
- full Geant4 based ILD simulation

• signal definition (mono-photon)

- signal definition (mono-photon)
 - minimum polar angle: $\theta_{\gamma} > 7^{\circ}$ need tracker to distinguish photon from electron

- signal definition (mono-photon)
 - minimum polar angle: $\theta_{\gamma} > 7^{\circ}$
 - minimum energy: 2 GeV
 - maximum energy: 220 GeV
 - avoid large background at Z return

signal definition (mono-photon)

- minimum polar angle: $\theta_{\gamma} > 7^{\circ}$
- minimum energy: 2 GeV
- maximum energy: 220 GeV
- minimum transverse momentum
 - ensure Bhabha lepton hits detector
 - follows inner rim of BCal (⇔ φ-dependent)

•
$$p_{T,\gamma} > 5.71 \, \text{GeV}$$
 for $|\phi| \leq 35$

- $p_{T,\gamma} > 1.97 \text{ GeV}$ for $|\phi| > 35$
- in BCal coordinates (7° tilted)

- signal definition (mono-photon)
 - minimum polar angle: $\theta_{\gamma} > 7^{\circ}$
 - minimum energy: 2 GeV
 - maximum energy: 220 GeV
 - minimum transverse momentum
 - ensure Bhabha lepton hits detector
 - follows inner rim of BCal (⇔ φ-dependent)
 - $p_{T,\gamma} > 5.71 \, \text{GeV}$ for $|\phi| \leq 35$
 - $p_{T,\gamma} > 1.97 \text{ GeV}$ for $|\phi| > 35$
 - in BCal coordinates (7 $^{\circ}$ tilted)

- signal definition (mono-photon)
 - minimum polar angle: $\theta_{\gamma} > 7^{\circ}$
 - minimum energy: 2 GeV
 - maximum energy: 220 GeV
 - minimum transverse momentum

[1 / GeV]

- signal definition (mono-photon)
 - minimum polar angle: $\theta_{\gamma} > 7^{\circ}$
 - minimum energy: 2 GeV
 - maximum energy: 220 GeV
 - minimum transverse momentum
- selection criteria (empty detector)
 - \rightarrow suppress Bhabhas
 - \rightarrow keep neutrinos

[1 / GeV]

- signal definition (mono-photon)
 - minimum polar angle: $\theta_{\gamma} > 7^{\circ}$
 - minimum energy: 2 GeV
 - maximum energy: 220 GeV
 - minimum transverse momentum
- selection criteria (empty detector)
 - \rightarrow suppress Bhabhas
 - \rightarrow keep neutrinos
 - veto events with track

with $p_T > 3 \,\mathrm{GeV}$

- signal definition (mono-photon)
 - minimum polar angle: $\theta_{\gamma} > 7^{\circ}$
 - minimum energy: 2 GeV
 - maximum energy: 220 GeV
 - minimum transverse momentum
- selection criteria (empty detector)

 \rightarrow suppress Bhabhas

- \rightarrow keep neutrinos
- veto events with track

with $p_T > 3 \,\text{GeV}$

- max. additional visible energy
 - add up all PFO energies
 - only consider particles if $\mathsf{E} > 5\,\mathsf{GeV}$
 - allow a max. energy sum of $10\,\text{GeV}$
 - or 30 GeV, if the extra energy is

from reconstructed neutrons or pions

- signal definition (mono-photon)
 - minimum polar angle: $\theta_{\gamma} > 7^{\circ}$
 - minimum energy: 2 GeV
 - maximum energy: 220 GeV
 - minimum transverse momentum
- selection criteria (empty detector)

 \rightarrow suppress Bhabhas

- \rightarrow keep neutrinos
- veto events with track

with $p_T > 3 \, \text{GeV}$

- max. additional visible energy
- no reconstructed clusters in forward calorimeter BeamCal

WIMP mass measurement

- at a lepton collider initial state is known
- shape of photon energy spectrum depends on WIMP mass
 - clear endpoint: the higher M_{χ} the lower $\mathsf{E}_{\gamma,\textit{max}}$
 - endpoint buried in the fluctuation of the background
 - template photon energy spectra with different M_{χ} are compared to the data...
 - ... and χ^2 -minimised
- with 500 fb⁻¹, (P_{e⁻}, P_{e⁺})=(+80%,-30%): precision of a few GeV to sub-GeV
 - dominated by systematic uncertainties
 - conservative: no information on beam spectrum assumed

Measurement of polarised cross-sections

• experiment: polarisation $<100\% \rightarrow (P_{e^-}, P_{e^+})=(80\%, 30\%)$ \rightarrow measurement is combination of all polarised cross-sections:

5/0⁰

$$\begin{split} \sigma_{measured} &= \mathbf{A} \cdot \sigma_{LL} + \mathbf{B} \cdot \sigma_{LR} + \mathbf{C} \cdot \sigma_{RL} + \mathbf{D} \cdot \sigma_{RR} \\ \text{e.g.:} \ \sigma_{-+} &= (1 + |P_{e^-}|)(1 - |P_{e^+}|)\sigma_{LL} \\ &+ (1 + |P_{e^-}|)(1 + |P_{e^+}|)\sigma_{LR} \\ &+ (1 - |P_{e^-}|)(1 - |P_{e^+}|)\sigma_{RL} \\ &+ (1 - |P_{e^-}|)(1 + |P_{e^+}|)\sigma_{RR} \end{split}$$

- fully polarised cross-sections can be extracted
- e.g. vector-like operator: $\sigma_{LL} = \sigma_{RR} = 0$

Moritz Habermehl | Dark Matter at the ILC | Terascale Annual Meeting | 28 Nov 2017 | 2

Measurement of polarised cross-sections

experiment: polarisation $\langle 100\% \rightarrow (P_{e^-}, P_{e^+}) = (80\%, 30\%)$ \rightarrow measurement is combination of all polarised cross-sections: $\sigma_{\text{measured}} = A \cdot \sigma_{II} + B \cdot \sigma_{IR} + C \cdot \sigma_{RI} + D \cdot \sigma_{RR}$ e.g.: $\sigma_{-+} = (1 + |P_{e^-}|)(1 - |P_{e^+}|)\sigma_{II}$ $+ (1 + |P_{e^{-}}|)(1 + |P_{e^{+}}|)\sigma_{IR}$ $+ (1 - |P_{e^-}|)(1 - |P_{e^+}|)\sigma_{RL}$ $+ (1 - |P_{e^{-}}|)(1 + |P_{e^{+}}|)\sigma_{RR}$ 5/σ₀ fully polarised cross-sections Systematics only can be extracted Total error e.g. vector-like operator: $\sigma_{II} = \sigma_{RR} = 0$ chirality of interaction can be tested 0 σ_{PI} σ_{RR} σ_{LR} σ_{II} Dark Matter at the ILC | Terascale Annual Meeting 28 Nov 2017 Moritz Habermehl

Partial wave determination

- dominant partial wave (s or p)
- leads to different shape of photon spectrum

- the wrong assumption leads to wrong ${\rm M}_{\chi}$

Moritz Habermehl

