November 28, 2017

Searches for direct production of charginos and neutralinos in final states with tau leptons at LHC

Zinonas Zinonos

Max-Planck-Institut für Physik, München

ATLAS

CMS

Motivation

- In thermal cosmology scenarios with a bino LSP, the annihilation cross section of DM particles would be too small, leading to an overabundance of DM compared to the current constraints from cosmological measurements.
- The existence of another, nearly massdegenerate, SUSY particle that could coannihilate with the DM particle would improve agreement significantly,
- Light staus could play role in co-annihilation of neutralinos ($m \sim O(100) \text{ GeV}$) leading to a DM relic density consistent with cosmological observations.

CMS: search for direct staus

- $\tau_{had} \tau_{had}$ final states
- hadronic di-τ trigger
- b-jet veto
- $\Delta \phi(\tau_{had}, \tau_{had})$ to suppress SM processes
- Require large $\sum M_T$ for the 2 τ_{had} candidates

$$M_{\rm T}(\mathbf{q}, \vec{p}_{\rm T}^{\rm miss}) \equiv \sqrt{2E_{{\rm T}, \mathbf{q}}E_{\rm T}^{\rm miss}(1 - \cos\Delta\phi)}$$

CMS: selection cont'd

CMS: search regions

- Exclusively defined
- **SR1:** large M_{T2} and $\Delta \varphi(\tau, \tau)$
- SR2: intermediate M_{T2} ,⁼ $\Delta \varphi(\tau, \tau)$ and E_T^{miss} but large $\sum M_T$
- **SR3:** intermediate M_{T2} , $\Delta \varphi(\tau, \tau)$ and $\sum M_T$ but large E_T^{miss}

Enhance sensitivity for...

signal models with larger stau masses

signal models with smaller stau masses

CMS: background

estimate

- Main source: Non-prompt and misidentified τ_{had}
- Dominant background: QCD multijet and W+jets processes
- Estimated using data-driven methods – control regions depleted of each background type (SS/Isolated τ-pairs)
- Second main background: Drell-Yan process, estimated from data-corrected simulation

ATLAS: search strategy

- $\tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\pm}$ and $\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0$ production with $\tilde{\chi}_1^0$ being a pure Bino and $\tilde{\tau}_1$ a pure $\tilde{\tau}_L$
- Target events with all-hadronic τ decays
- 2 signal regions based on m_{T2} and E_T^{miss}
- Cover regions with $\Delta m(\tilde{\chi}_1^{\pm}, \tilde{\chi}_1^0) \gtrless 200 \text{ GeV}$
- Main background: QCD multijets from a matrix method (ABCD)

SR "low-mass"

- Di- τ hadronic + E_T^{miss} trigger
- large m_{T2} and E_T^{miss}

SR "high-mass"

- Di-τ hadronic asymmetric trigger
- large m_{T2} and E_T^{miss}
- high m(τ_1, τ_2)

ATLAS: Distributions in signal regions

---- $\tilde{\chi}_{1}^{\pm} \tilde{\chi}_{2}^{0}$ production with m(C1, N2) = 600 GeV ---- $\tilde{\chi}_{1}^{\pm} \tilde{\chi}_{1}^{\pm}$ production with m(C1) = 600 GeV + $\tilde{\chi}_{1}^{0}$ is massless

ATLAS: Exclusion Contours

 \rightarrow Limits significantly extend previous LEP, ATLAS and CMS results in the high $\tilde{\chi}_1^{\pm}$ mass region

ATLAS: Exclusions Landscape

- 95% CL exclusion limits on $\tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\pm}, \tilde{\chi}_1^{\pm} \tilde{\chi}_2^{0}$, and $\tilde{\chi}_2^{0} \tilde{\chi}_3^{0}$ production with either SM-boson-mediated or slepton-mediated decays
- As a function of the $\tilde{\chi}_1^{\pm}$, $\tilde{\chi}_2^0$, $\tilde{\chi}_3^0$ and $\tilde{\chi}_1^0$ masses
- The production cross-section is for *pure wino* $\tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\pm}$ and $\tilde{\chi}_1^{\pm} \tilde{\chi}_2^{0}$, and *pure higgsino* $\tilde{\chi}_2^0 \tilde{\chi}_3^0$
 - ---, ---: analyses involving $ilde{ au}$'s

- Search for Supersymmetry in final states involving hadronic taus
- No significant excess is observed in any of the signal regions in both experiments
- Interpretations as limits on the production of (in)direct stau pairs in the context of simplified models

- The CMS analysis is most sensitive to the direct production of left-handed staus.
- ATLAS is excluding the production of chargino pairs and massdegenerate charginos & NLSP neutralinos with masses up to 760 GeV.

References

- Search for pair production of tau sleptons in √s=13 TeV pp collisions in the all-hadronic final state, CMS Collaboration, <u>CMS-PAS-SUS-17-003</u>
- Search for the direct production of charginos and neutralinos in final states with tau leptons in Vs= 13 TeV pp collisions with the ATLAS detector, <u>ATLAS-CONF-2017-035</u>

ATLAS

Stau searches

 \rightarrow Mass of lightest 3rd-generation sparticles, $\tilde{\chi}^{\pm}$ and $\tilde{\chi}^{0}$ should be $\sim \mathcal{O}(100 \text{ GeV})$

– arguments suggested by Naturalness to protect $\ensuremath{\mathsf{m}_{\mathsf{H}}}$ from quadratically divergent quantum corrections

 \rightarrow Models with light $\tilde{\tau}$ are consistent with current matter data from cosmological observations

 \rightarrow In the context of pMSSM, EW production of direct $\tilde{\tau}$'s becomes dominant if $\tilde{\chi}^{\pm}$ and $\tilde{\chi}^{0}$ are heavy ($\tilde{\chi}_{1}^{0}$ is bino-like):

$$\begin{array}{ll} \sigma(\tilde{\tau}_L) & \sim & 270 \to 0.5 \ \mathrm{fb} \\ \sigma(\tilde{\tau}_R) & \sim & 97 \to 0.2 \ \mathrm{fb} \\ m_{\tilde{\tau}} & \sim & 100 \to 500 \ \mathrm{GeV} \end{array}$$

16

Simplified model with stau mixing $ilde{ au}_1 = ilde{ au}_R, \ ilde{ au}_2 = ilde{ au}_L$

Signal Regions

SR-lowMass	SR-highMass		
at least one opposite sign tau pair			
<i>b</i> -jet veto			
Z-veto			
at least two medium tau candidates	at least one medium and one tight tau candidates		
	$m(\tau_1, \tau_2) > 110 \text{ GeV}$		
$m_{\rm T2} > 70 {\rm ~GeV}$	$m_{\rm T2} > 90 {\rm ~GeV}$		
di-tau+ $E_{\rm T}^{\rm miss}$ trigger	di-tau+ $E_{\rm T}^{\rm miss}$ trigger	asymmetric di-tau trigger	
$E_{\rm T}^{\rm miss} > 150 {\rm ~GeV}$	$E_{\rm T}^{\rm miss} > 150 { m GeV}$	$E_{\rm T}^{\rm miss} > 110 {\rm GeV}$	
$p_{T,\tau_1} > 50 \text{ GeV}$	$p_{T,\tau_1} > 80 \text{ GeV}$	$p_{\mathrm{T},\tau_1} > 95 \mathrm{GeV}$	
$p_{T,\tau_2} > 40 \text{ GeV}$	$p_{T,\tau_2} > 40 \text{ GeV}$	$p_{T,\tau_2} > 65 \text{ GeV}$	

- SR-lowMass (SR-highMass) to cover signal models where the mass difference between the C1/N1 is smaller (larger) than 200 GeV.
- In SR-lowMass, only the di-tau+E T miss trigger is used
- In SR-highMass events are selected with the di-tau+E T miss trigger or by the asymmetric di-tau trigger

Background estimate

E_Tmiss,

т₂,

 $M(\tau_1,\tau_2),$

 $\Delta R(\tau_1,\tau_2)$

- CR-B and CR-C, events are recorded using a di-tau trigger
- multi-jet events in the control and validation regions is estimated from data after subtraction
- of other SM contributions estimated from MC simulation
- CR-B and VR-E more than 86 % of the events come from multi-jet production
- CR-A and CR-C the multi-jet purity is larger than 47 % and 68 %, respectively
- The signal contamination in CR-A for both SRs ranges from a few percent to 30–50 % for a few signal models, and it is taken into account in the simultaneous fit

tau-id and charge

ABCD Definitions

CR-A	SR-D (SR-lowMass)	
di-tau+ E_{T}^{miss} trigger		
≥ 2 loose tau leptons (SS)	≥ 2 medium tau leptons (OS)	
$m(\tau_1, \tau_2) < 250 \text{ GeV}$		
$\Delta R(\tau_1, \tau_2) > 1.5$		
$E_T^{\text{miss}} > 150 \text{ GeV}$	$E_T^{\text{miss}} > 150 \text{ GeV}$	
$m_{T2} > 70 \text{ GeV}$	$m_{\rm T2} > 70 { m ~GeV}$	
VR-E	VR-F	
di-tau trigger		
≥ 2 loose tau leptons (SS)	≥ 2 medium tau leptons (OS)	
$m(\tau_1, \tau_2) < 250 \text{ GeV}$		
$\Delta R(\tau_1, \tau_2) > 1.5$		
$E_{\rm T}^{\rm miss} > 40 {\rm GeV}$	$E_{T}^{miss} > 40 \text{ GeV}$	
$50 < m_{T2} < 70 \text{ GeV}$	$50 < m_{T2} < 70 \text{GeV}$	
CR-B	CR-C	
di-tau trigger		
≥ 2 loose tau leptons (SS)	≥ 2 medium tau leptons (OS)	
$m(\tau_1, \tau_2) < 250 \text{ GeV}$		
$\Delta R(\tau_1, \tau_2) > 1.5$		
$E_{\rm T}^{\rm miss} > 40 {\rm GeV}$	$E_{\rm T}^{\rm miss} > 40 \text{ GeV}$	
$20 < m_{T2} < 50 \text{ GeV}$	$20 < m_{T2} < 50 \text{ GeV}$	

CR-A	SR-D (SR-highMass)		
di-tau+ E_{T}^{miss} or asymmetric di-tau trigger			
≥ 2 loose tau leptons (OS)	≥ 2 medium tau leptons (OS)		
< 1 medium 1 tight tau leptons	≥ 1 tight tau lepton		
$\Delta R(\tau_1, \tau_2) > 1.8$			
$E_T^{\text{miss}} > 110 \text{ GeV}$	$E_{T}^{miss} > 110 \text{ GeV}$		
$m_{T2} > 90 \text{ GeV}$	$m_{T2} > 90 \text{ GeV}$		
VR-E	VR-F		
di-tau or asymmetric di-tau trigger			
≥ 2 loose tau leptons (OS)	≥ 2 medium tau leptons (OS)		
< 1 medium 1 tight tau leptons	≥ 1 tight tau lepton		
$\Delta R(\tau_1, \tau_2) > 1.8$			
$E_{T}^{miss} > 40 \text{ GeV}$	$E_T^{\text{miss}} > 40 \text{ GeV}$		
$60 < m_{T2} < 90 \text{ GeV}$	$60 < m_{T2} < 90 \text{ GeV}$		
CR-B	CR-C		
di-tau or asymmetric di-tau trigger			
≥ 2 loose tau leptons (OS)	≥ 2 medium tau leptons (OS)		
< 1 medium 1 tight tau leptons	≥ 1 tight tau		
$\Delta R(\tau_1, \tau_2) > 1.8$			
$E_{\rm T}^{\rm miss} > 40 {\rm GeV}$	$E_{\rm T}^{\rm miss} > 40 {\rm ~GeV}$		
$10 < m_{T2} < 60 \text{ GeV}$	$10 < m_{T2} < 60 \text{ GeV}$		

Z and Top Validation Regions

Z-VR	Top-VR	
at least one opposite sign tau lepton pair		
tau $p_{\rm T} > 50, 40 {\rm ~GeV}$		
$E_{\rm T}^{\rm miss} > 60 { m ~GeV}$		
at least two medium tau leptons	at least one medium and one loose tau lepton	
<i>b</i> -jet veto	at least 1 <i>b</i> -jet	
$m_{\rm T2}$ < 10 GeV	$m_{\rm T2} > 10 {\rm ~GeV}$	
	$m_{\rm CT}$ top-tagged	

WW and ZZ Validation regions

WW-VR	ZZ-VR	
one opposite sign lepton pair		
$\mu p_{\rm T}$ >30 GeV, $e p_{\rm T}$ > 40 GeV		
jet veto		
$m_{\ell\ell} > 50 \text{ GeV}$		
$E_{\rm T}^{\rm miss} > 50 { m ~GeV}$		
$m_{T\mu} > 100 \text{ GeV}$		
$m_{\rm T2} > 70 {\rm ~GeV}$		
two isolated leptons (e or μ) with different flavor	two isolated leptons ($e \text{ or } \mu$) with same flavor	
$m_{\rm CT}$ top tag veto	$\Delta R(\ell,\ell) < 1.5$	
	$ m_{\ell\ell} - m_Z < 15 \text{ GeV}$	

VR Distributions

CMS

Systematic Uncertainties

Uncertainty	Signal	Non-prompt/misID	Drell-Yan	Тор	Rare SM
Tau Efficiency	11%	5%	10%	10%	10%
Iso extrap. non-prompt $ au_{ m h}$	-	28-35	_	-	-
Correlations non-prompt τ_h	-	8–13%	_	-	-
Tau energy scale	2–12%	-	22–34%	9–18%	7–18%
Jet energy scale	1–5%	-	12–20%	1–5%	4-10%
Jet energy resolution	1-4%	-	29–61%	3–10%	11–31%
Unclustered energy	0–3%	-	12–17%	4–5%	3–10%
B-tagging	0.5–1%	-	2–3%	11–20%	1–2%
Drell-Yan mass & p_T	-	-	18–21%	-	-
Background cross sections	-	-	20%	20%	20%
Fast versus full simulation	1–30%	-	—	—	_

Limits at 0.95 CLs

	SR1	SR2	SR3
Non-prompt and misidentified taus	$0.68 \substack{+0.90 \\ -0.68}$	2.49 ± 1.83	<1.24
Drell-Yan background	$0.80^{+0.97}_{-0.80}$	< 0.71	< 0.71
Top-quark related background	$0.02^{+0.03}_{-0.02}$	0.73 ± 0.31	1.76 ± 0.68
Rare SM processes	$0.72{\pm}~0.38$	$0.20{\pm}~0.15$	$0.20 \pm {}^{+0.25}_{-0.20}$
Total background	$2.22^{+1.37}_{-1.12}$	$4.35^{+1.75}_{-1.53}$	$3.70^{+1.52}_{-1.08}$
Left (150,1)	1.25 ± 0.40	2.91 ± 0.59	1.53 ± 0.33
Right (150,1)	1.09 ± 0.26	1.27 ± 0.20	0.74 ± 0.17
Mixed (150,1)	1.04 ± 0.22	1.39 ± 0.27	0.92 ± 0.15
Observed	0	5	2