

Search for additional Higgs bosons in WW final states with CMS

Peter Fackeldey, Wolfgang Lohmann, Dennis Roy, Hale Sert, Achim Stahl

RWTH Aachen - III. Physikalisches Institut B 28.11.2017

Introduction: 2HDM

- The Two Higgs Doublet Model (2HDM) is an extension of the SM, where we have two Higgs doublets
- 5 Higgs bosons are predicted: h, H, A, H^{+/-}
- In 2HDM, two of many free parameters of interest are:
 - α : mixing angle between h and H
 - tan β : ratio of the two doublets' VEVs: v_u/v_d

Introduction: MSSM

The MSSM is a type-II 2HDM

- → up-type quarks couple to one doublet; down-type quarks and charged leptons couple to the other
- In MSSM, benchmark scenarios are used to set meaningful values to most free parameters
 - \rightarrow 2 free parameters remain
 - These two parameters are m_A and $tan\beta$

MSSM limits from Run 1

- $H \rightarrow WW/ZZ$ channel (orange) is more sensitive at low m_A and tan β
- Out of the three neutral MSSM Higgs bosons, only **H** is considered
 - theoretical uncertainty of **h** is too large
 - A does not couple to
 VV

 \bigcirc

Addition of VBF production & category is planned

Backgrounds

- Main background processes:
 - WW
- Top (tt & tW)
- Non-dominant backgrounds:
 - W+Jets
 - DrellYan (Z \rightarrow $\tau\tau$)
 - VΖ, Vγ
 - VVV

Selection criteria

- Cuts are applied to reduce background processes
 - Most cuts are the same as those used by the H \rightarrow WW high mass search
 - Stronger cut chosen for E_{τ}^{miss}

⊯ / GeV

Discriminant variable

The final discriminant used in this analysis is a variable m_{T,i} $m_{T,i} = \sqrt{(p_{ll} + E_T^{miss})^2 - (\vec{p}_{ll} + \vec{p}_T^{miss})^2}$

- Blinded distribution of signal region in the 1 jet category:
 - Red line shows distribution for 200 GeV signal

8

Background estimation

- Data-driven methods are used to estimate the main background processes
- Top & DY: Control regions are used to extract the normalization from data; Shapes are taken from simulation with applied reweighting corrections
- Currently, the other backgrounds are estimated from simulation

9

Top control plots

- Cut on n_{btag} is inverted:
 - 0 jet categ.: $n_{btag} > 0$
 - 1 jet categ.: n_{btag} == 1
 - 2 jet categ.: $n_{btag} > 0$

Model dependent limits

- Preliminary limits using ggH \rightarrow WW \rightarrow eµ channel m_h^{mod+} and hMSSM scenarios are used
 - Expectation excludes area at small m_{A} and tan β

2HDM limit

- In a more generalized 2HDM (type 2), limits can be displayed in a $cos(\beta-\alpha)$ -tan β plane
 - \rightarrow Coupling of H \rightarrow WW is proportional to cos(β - α)

•
$$m_{_{H}} = m_{_{A}} = 300 \text{ GeV}$$

• $sin(β-α) > 0$

13

 Orange Run 1 result (left) uses also VBF, more final states, and H → ZZ channel

Outlook

Insight was given into the BSM H \rightarrow WW analysis

- This channel is sensitive for low values of m_A and tanβ in MSSM scenarios
- Next steps:
 - Include VBF
 - Include same flavor final states (ee and μμ)
 - Look at 2016 data
 - Perform analysis on 2017 data

Backup

Effect of VBF category

2jet ("ggH") category:2jet VBF category:

 $\Delta \eta_{ij} < 3.5 \parallel m_{ij} < 500 \text{ GeV}$ $\Delta \eta_{ij} > 3.5 \& m_{ij} > 500 \text{ GeV}$

Effect on (200GeV) ggH signal sample:

17

Effect on (200GeV)VBF signal sample:

Selection criteria

Removes

- Applied cuts:
 - p_{T,1} > 25 GeV
 - p_{T,2} > 20 GeV
 - p_{T,3} < 10 GeV
 - $E_T^{miss} > 40 \text{ GeV}$
 - p_{T,vis} > 30 GeV
 - $m_{T,II+MET} > 60 \text{ GeV}$
 - $m_{\parallel} > 50 \text{ GeV}$

Leptons are also well identified and isolated

- \rightarrow Reduces VZ, Vy, VVV
- \rightarrow Neutrinos in end state
- \rightarrow Reduces DY
- \rightarrow Reduces DY
- → Reduces W+jets
- $n_{btag}(p_T > 20 \text{ GeV}) == 0$ → Reduces Top

Backgrounds by category Physics Institute III B

Selection criteria

Cuts are applied to reduce background processes Examples:

m₁ > 50 GeV

0

Physics Institute III B

Uncertainties

- The nuisances are the same as those used in the H \rightarrow WW high mass search analysis
- Experimental:
 - Luminosity
 - Jet energy scale
 - Lepton p_{τ} scale and resolution
 - E_{T}^{miss} modeling
 - B-tag scale factor uncertainty
 - MC statistics

- Theoretical:
 - PDF and QCD scale
 - Jet bin migration
 - $gg \rightarrow WW$ normalization
 - tt and tW relative fraction uncertainty
 - PDF and QCD scale on selection efficiency
 - NNLO+NNLL reweighting for
 qq → WW
 - UE: different Pythia8 tunes
 - PS: Pythia8 vs Herwig

Branching ratio $H \rightarrow WW$. \bigcirc **Physics** Institute III B

m₄

- BR decreases for higher tan β because coupling is instead enhanced for down-type quarks and charged leptons
- BR decreases for higher m_a because coupling proportional to $\cos(\beta - \alpha) \rightarrow 0$ (decoupling limit)

				unβ	30		0.4	0 BB
				ta	25		- 0.3	5
							- 0.3	0
					20		0.2	:5
					15		0.2	!0
Φ	$g_{\Phi ar{u} u}$	$g_{\Phi ar{d} d}$	$g_{\Phi VV}$]	10		- 0.1	5
h	$\cos \alpha / \sin \beta$	$-\sin \alpha / \cos \beta$	$\sin(\beta - \alpha)$]			0.1	0
H	$\sin \alpha / \sin \beta$	\coslpha/\coseta	$\cos(\beta - \alpha)$		5		0.0	15
A	$1/\tan\beta$	aneta	0		200 400	600 800	1000	10