Search for pair production of vector-like top quarks in the Zt+X channel

Jan Küchler

NUPPERT EXPERIMENT

Physics at the Terascale - 28.11.2017

Jan Küchler (Uni Wuppertal)

NIVERS

VLQ $Zt + X - 1\ell + E_T^{miss}$

Terascale - 28.11.2017

Introduction

Search for pair production of vector-like top quarks in the Zt+X channel

- Introduction and motivation
- ② Event selection
- Background estimate
- Results

Based on publication: [JHEP 1708 (2017) 052] [Figures]

Vector-like quarks

- Vector-like quarks are a potential extension of the Standard Model
 - left- and right-handed components transform identically under weak force

- Mass terms in Lagrangian possible independent of Higgs mechanism
 - Coupling to Higgs boson allows to solve "naturalness problem"
- Here: focus on "top partner" T with q = 2/3 |e|
 - Assume mixing only with third generation of quarks
 - Possible decays $T \rightarrow Zt$, $T \rightarrow Ht$ and $T \rightarrow Wb$
 - SU(2) Singlet, or SU(2) Doublet (T B), (X T) possible models for branching ratios

Jan Küchler (Uni Wuppertal)

The Zt + X channel

- Select $T\bar{T} \rightarrow Zt + X$ decay with $Z \rightarrow \nu \bar{\nu}$
 - Higher branching ratio compared to $Z \rightarrow \ell \ell$
 - High $E_{\rm T}^{\rm miss}$ for trigger selection and background supression
 - Require one lepton (e/μ) from top quark decay
 - QCD multijet suppression
 - Target hadronic boson decay in "second leg"
 - High branching ratios and boosted, massive object for selection
 - Less dependent on exact branching ratios no specific Z, W or H selection
 - \bullet Overall signature: 1/l, \geq 4 jets, b-jets, high $E_{\rm T}^{\rm miss}$ and boosted objects

Jan Küchler (Uni Wuppertal)

VLQ $Zt + X - 1\ell + E_{T}^{miss}$

• Standard Model processes with similar signature: $t\bar{t}$, W+jets, single-top (Wt) and $t\bar{t} + Z(\rightarrow \nu\nu)$

• Standard Model processes with similar signature: $t\bar{t}$, W+jets, single-top (Wt) and $t\bar{t} + Z(\rightarrow \nu\nu)$

- Dominated by dileptonic $t\bar{t}$ after $m_{\rm T}$ requirement
- Use $m_{\rm T2}$ based variables for suppression

8 / 19+6

- Dominated by dileptonic $t\bar{t}$ after m_{T} requirement
- Use $m_{\rm T2}$ based variables for suppression

Jan Küchler (Uni Wuppertal)

VLQ $Zt + X - 1\ell + E_{T}^{miss}$

Terascale - 28.11.2017

- Signal has two massive T particles
 - \Rightarrow Decay products aquire high boost
- Fully hadronically decaying objects may overlap in the detector
 - Top quark decay
 - $W/Z/H \rightarrow jj$

- Large-radius jets used to reconstruct such objects
 - R = 1.0 jets reclustered from R = 0.4 jets
 - Calibration and uncertainties derived from constituents

Signal selection

- Signal region selection based on discriminating variables
- Single-bin signal region
- Optimised for $\mathcal{B}\left(\mathcal{T}
 ightarrow Zt
 ight) =$ 80%
- Two large-*R* jets intended to capture had. top quark and boson decays
- SM backgrounds dominated by dileptonic $t\bar{t}$, W+jets and single-top events

 $\begin{array}{ll} \mbox{SM background:} & 6.1 \pm 1.9 \mbox{ events} \\ \mbox{Signal } (m=1 \ {\rm TeV}) \\ \mbox{for } \mathcal{B} \left(\mathcal{T} \rightarrow Zt \right) = 80\% \end{array} \ 13.4 \pm 0.5 \mbox{ events} \\ \end{array}$

Variable	Signal Region
$\begin{array}{c} E_{\rm T}^{\rm miss} & \\ m_{\rm T}^{\rm W} & m_{\rm T}^{\rm m} \\ am_{\rm T2} & \\ m_{\rm T2}^{\rm miss} \\ H_{\rm T,sig}^{\rm miss} \\ Jet \rho_{\rm T} \\ Jet \rho_{\rm T} \\ \phi(j_{1,2}, E_{\rm T}^{\rm miss}) \\ \# b \text{-tagged jets} \\ \# large-R jets \\ Large-R jet mass \\ Large-R jet \rho_{\rm T} \end{array}$	$\begin{array}{r l} > 350 \ {\rm GeV} \\ > 170 \ {\rm GeV} \\ > 175 \ {\rm GeV} \\ > 80 \ {\rm GeV} \\ > 12 \\ > 120, 80, 50, 25 \ {\rm GeV} \\ > 0.4 \\ & \geq 1 \\ & \geq 2 \\ > 80, 60 \ {\rm GeV} \\ > 290 \ {\rm GeV} \ (> 200 \ {\rm GeV}) \end{array}$
SR Is = 13 TeV	ti (36.2%) W+jets (23.8%) Single top (17.4%) Ht-V (14.0%) Diboson (8.7%)

Terascale - 28.11.2017

10 / 19+6

VLQ $Zt + X - 1\ell + E_{T}^{miss}$

• Dominant backgrounds normalised in control regions

- Similar selection as in SR, inverted $m_{\rm T}^W$ requirement
- For W+jets background require = 0 *b*-jets
- Background normalisation determined in simultaneous fit

$$\mu_{t\bar{t}} = 1.05 \pm 0.17$$
 $\mu_{W+jets} = 0.70 \pm 0.10$

Jan Küchler (Uni Wuppertal)

VLQ $Zt + X - 1\ell + E_{T}^{miss}$

11 / 19+6

Background estimate

- Good agreement of data and simulation in control regions
 - Using background normalisation from fit
- Checked distributions of all relevant observables

Jan Küchler (Uni Wuppertal)

VLQ $Zt + X - 1\ell + E_{TT}^{miss}$

Terascale – 28.11.2017 12 / 19+6

Uncertainty	bit
Total background prediction	6.1
Total statistical $(\sqrt{n_{exp}})$	±2.5
Total background uncertainty	$\pm 1.9 [31\%]$
$\overline{t\bar{t}}$ MC generator	±1.1 [17%]
$t\bar{t}$ fragmentation	± 0.8 [14%]
$t\bar{t}$ radiation	± 0.7 [11%]
MC stat. (nominal samples)	± 0.7 [11%]
$t\bar{t}$ Single-top interference	± 0.6 [11%]
Single-top radiation	± 0.4 [6.6%]
$\mu_{t\bar{t}}$	± 0.4 [6.6%]
Diboson fact. scale	± 0.4 [6.5%]
Diboson renorm. scale	± 0.4 [6.1%]
W+jets heavy flavour fraction	± 0.3 [5.3%]
Jet mass resolution	± 0.3 [5.0%]
Diboson resum. scale	± 0.3 [4.7%]
Flavour-tagging light-jet mistag rate	± 0.3 [4.5%]
Single-top fragmentation	± 0.2 [3.5%]
Flavour-tagging c-jet mistag rate	$\pm 0.2 [3.4\%]$
W+jets MC generator	± 0.2 [3.1%]
ttPDF	$\pm 0.2 \ [2.8\%]$
μ_{W+iets}	$\pm 0.2 [2.4\%]$
W+jets merging scale	± 0.1 [2.4%]
W+jets renorm. scale	± 0.1 [2.3%]
W+jets resum. scale	± 0.1 [2.3%]
W+jets fact. scale	± 0.1 [2.3%]
Jet energy scale (1 st component)	+0.1 [2.0%]

- Systematic uncertainties as nuisance parameters in profile likelihood fits
- Overall dominated by statistical uncertainty: 40% (syst.: 31%)
- Dominant systematic unc.: $t\overline{t}$ modelling ($\leq 17\%$)
 - Reduced influence by CR→SR approach, normalization effects cancel

Terascale - 28.11.2017

13 / 19+6

 Dominant experimental uncertainty: iet mass resolution (5%)

Uncertainty	SR
Fotal background prediction	6.1
Fotal statistical $(\sqrt{n_{\rm exp}})$ Fotal background uncertainty	$\pm 2.5 \\ \pm 1.9 \ [31\%]$
t t MC generator	+1.1 [1797]
$t\bar{t}$ fragmentation	$\pm 0.8 [14\%]$
tt radiation	+0.7 [11%]
MC stat. (nominal samples)	$\pm 0.7 [11\%]$
$t\bar{t}$ Single top interference	$\pm 0.6 [11\%]$
Single top radiation	$\pm 0.4 [6.6\%]$
U.T	$\pm 0.4 [6.6\%]$
Pitoson fact scale	$\pm 0.4 [6.5\%]$
Diboson renorm scale	$\pm 0.4 [6.076]$
W+jets heavy flavour fraction	$\pm 0.3 [5.3\%]$
Let mass resolution	$\pm 0.3 [5.0\%]$
Diboson resum scale	$\pm 0.3 [4.7\%]$
Flavour-tagging light-jet mistag rate	$\pm 0.3 [4.5\%]$
Single-top fragmentation	$\pm 0.2 [3.5\%]$
Flavour-tagging c-jet mistag rate	$\pm 0.2 [3.4\%]$
W+iets MC generator	$\pm 0.2 [3.1\%]$
ttPDF	$\pm 0.2 [2.8\%]$
//W/+ista	$\pm 0.2 [2.4\%]$
W+iets merging scale	$\pm 0.1 [2.4\%]$
W+ jets renorm. scale	± 0.1 [2.3%]
W+ jets resum. scale	± 0.1 [2.3%]
W+jets fact. scale	± 0.1 [2.3%]
Jet energy scale (1 st component)	+0.1 [2.0%]
Jan Küchler (Uni Wuppertal)	VLQ $Zt + X - 1\ell +$

- Systematic uncertainties as nuisance parameters in profile likelihood fits
- Overall dominated by statistical uncertainty: 40% (syst.: 31%)
- Dominant systematic unc.: $t\overline{t}$ modelling ($\leq 17\%$)
 - Reduced influence by CR→SR approach, normalization effects cancel

Terascale - 28.11.2017

13 / 19+6

 Dominant experimental uncertainty: jet mass resolution (5%)

Uncertainty	SR
Total background prediction	6.1
Total statistical $(\sqrt{n_{\text{exp}}})$	±2.5
Total background uncertainty	$\pm 1.9 [31\%]$
	1.4.4.54.80(1)
t MC generator	$\pm 1.1 [17\%]$
t fragmentation	$\pm 0.8 \ [14\%]$
t radiation	$\pm 0.7 [11\%]$
MC stat. (nominal samples)	$\pm 0.7 \ [11\%]$
tt Single-top interference	$\pm 0.6 [11\%]$
Single-top radiation	$\pm 0.4 \ [6.6\%]$
$\mu_{t\bar{t}}$	$\pm 0.4 \ [6.6\%]$
Diboson fact. scale	$\pm 0.4 \ [6.5\%]$
Diboson renorm. scale	$\pm 0.4 \ [6.1\%]$
W+jets heavy flavour fraction	± 0.3 [5.3%]
Jet mass resolution	± 0.3 [5.0%]
Diboson resum. scale	± 0.3 [4.7%]
Flavour-tagging light-jet mistag rate	± 0.3 [4.5%]
Single-top fragmentation	± 0.2 [3.5%]
Flavour-tagging c-jet mistag rate	± 0.2 [3.4%]
W+jets MC generator	± 0.2 [3.1%]
tĪPDF	± 0.2 [2.8%]
μ_{W+iets}	± 0.2 [2.4%]
W+jets merging scale	± 0.1 [2.4%]
W+jets renorm. scale	± 0.1 [2.3%]
W+jets resum. scale	± 0.1 [2.3%]
W+jets fact. scale	± 0.1 [2.3%]
Jet energy scale (1 st component)	± 0.1 [2.0%]
Jan Küchler (Uni Wuppertal)	VLQ $Zt + X - 3$

- Systematic uncertainties as nuisance parameters in profile likelihood fits
- Overall dominated by statistical uncertainty: 40% (syst.: 31%)
- Dominant systematic unc.: $t\overline{t}$ modelling ($\leq 17\%$)
 - Reduced influence by CR→SR approach, normalization effects cancel

Terascale - 28.11.2017

13 / 19+6

 Dominant experimental uncertainty: jet mass resolution (5%)

Uncertainty	SR
Total background prediction	6.1
Total statistical $(\sqrt{n_{\text{exp}}})$	± 2.5
Total background uncertainty	±1.9 [31%]
$\overline{t\overline{t}}$ MC generator	±1.1 [17%]
$t\bar{t}$ fragmentation	± 0.8 [14%]
$t\overline{t}$ radiation	± 0.7 [11%]
MC stat. (nominal samples)	± 0.7 [11%]
$t\bar{t}$ Single-top interference	± 0.6 [11%]
Single-top radiation	± 0.4 [6.6%]
$\mu_{t\bar{t}}$	± 0.4 [6.6%]
Diboson fact. scale	± 0.4 [6.5%]
Diboson renorm. scale	$\pm 0.4 \ [6.1\%]$
W+jets heavy flavour fraction	$\pm 0.3 [5.3\%]$
Jet mass resolution	$\pm 0.3 [5.0\%]$
Diboson resum. scale	± 0.3 [4.7%]
Flavour-tagging light-jet mistag rate	$\pm 0.3 \ [4.5\%]$
Single-top fragmentation	$\pm 0.2 \ [3.5\%]$
Flavour-tagging c -jet mistag rate	$\pm 0.2 \ [3.4\%]$
W+jets MC generator	$\pm 0.2 [3.1\%]$
ttPDF	$\pm 0.2 \ [2.8\%]$
μ_{W+jets}	$\pm 0.2 \ [2.4\%]$
W+jets merging scale	$\pm 0.1 \ [2.4\%]$
W+jets renorm. scale	$\pm 0.1 \ [2.3\%]$
W+jets resum. scale	$\pm 0.1 \ [2.3\%]$
W+jets fact. scale	$\pm 0.1 [2.3\%]$
Jet energy scale (1 st component)	± 0.1 [2.0%]
Jan Küchler (Uni Wuppertal)	VLQ $Zt + X -$

- Systematic uncertainties as nuisance parameters in profile likelihood fits
- Overall dominated by statistical uncertainty: 40% (syst.: 31%)
- Dominant systematic unc.: $t\bar{t}$ modelling ($\leq 17\%$)
 - Reduced influence by CR→SR approach, normalization effects cancel
- Dominant experimental uncertainty:
 ist mean mealution (F0/)

jet mass resolution (5%)

Terascale - 28.11.2017 13 / 19+6

Background validation

- Validation of background estimate in dedicated regions
 - Defined disjunct to CR and SR: require exactly 1 large-R jet
 - Allows to test $m^W_{
 m T}$ extrapolation $(1\ell o 2\ell \ t \, ar t)$
 - Additional validation region for single-top background

• Checked overall counts and distributions of all relevant observables

- Largest discrepancy: 0.5 σ in the single-top VR normalisation
- \Rightarrow Good agreement of data and simulation in validation regions

Jan Küchler (Uni Wuppertal)

VLQ $Zt + X - 1\ell + E_{T}^{miss}$

Terascale - 28.11.2017 14 / 19+6

Results

VLQ $Zt + X - 1\ell + E_{T}^{miss}$

Terascale - 28.11.2017

15 / 19+6

Total pred

tt 1L1τ × 1.05

Single top

Diboson

1200

E_T^{miss} [GeV]

Limits on VLQs

 $\bullet~$ No excess \rightarrow 95% CL limits on cross section

• For $\mathcal{B}(T \to Zt) = 100\%$ exclude $m_T < 1.16$ TeV (exp. 1.17 TeV)

Jan Küchler (Uni Wuppertal)

VLQ $Zt + X - 1\ell + E_{T}^{miss}$

Terascale – 28.11.2017

Limits on VLQs

Limits on VLQs

- Mass limits for arbitrary decay branching ratios
 - assuming $\mathcal{B}(Zt) + \mathcal{B}(Ht) + \mathcal{B}(Wb) = 100\%$

Summary and outlook

- Search for vector-like T quarks in $T \rightarrow Zt$ decays
 - Require high $E_{\mathrm{T}}^{\mathrm{miss}}$ from Z
 ightarrow
 u
 u decay
 - Require 2 large-R jets for hadronic top quark and boson decays
- Dominant backgrounds normalised in control regions
 - Data well modelled in control and validation regions
- No excess \rightarrow limits on VLQ *T* production

Signal	Obs. 95% CL	Exp. 95% CL		
	lower mass limit	lower mass limit		
$T \rightarrow Zt$	$1.16\mathrm{TeV}$	$1.17\mathrm{TeV}$		
Singlet	$0.87\mathrm{TeV}$	$0.89\mathrm{TeV}$		
Doublet	$1.05\mathrm{TeV}$	$1.06 \mathrm{TeV}$		

Preselection, SR and CRs

Variable	Preselection	SR	TCR	WCR
$E_{\mathrm{T}}^{\mathrm{miss}}$	> 300 GeV	> 350 GeV	> 300 GeV	
$m_{ m T}^W$	> 30 GeV	> 170 GeV	$\in [30, 90]$	GeV
$am_{ m T2}$	-	> 175 GeV	> 100 GeV	
$m_{ m T2}^{ au}$	_	> 80 GeV	> 80 GeV	
$H_{\mathrm{T,sig}}^{\mathrm{miss}}$	_	> 12	—	
Jet $p_{\rm T}$	> 25 GeV	> 120, 80, 50, 25 GeV	> 120, 80, 50, 25 GeV	
$ \Delta\phi(j_i, E_{\mathrm{T}}^{\mathrm{miss}}) , i = 1, 2$	> 0.4	> 0.4	> 0.	4
# <i>b</i> -tagged jets	≥ 1	≥ 1	≥ 1	= 0
# large-radius jets	-	≥ 2	≥ 2	:
Large-radius jet mass	_	> 80, 60 GeV	> 80, 60	GeV
Large-radius jet $p_{\rm T}$	_	$\begin{array}{l} > 290 \ {\rm GeV} \ {\rm if} \ E_{\rm T}^{\rm miss} < 450 \ {\rm GeV} \\ > 200 \ {\rm GeV} \ {\rm if} \ E_{\rm T}^{\rm miss} > 450 \ {\rm GeV} \end{array}$	> 200	GeV

- SR: signal region
- TCR: *t*t̄ control region
- WCR: *W*+jets control region

19+1 / 19+6

Variable	Signal Region	TVR	WVR	STVR
$E_{\mathrm{T}}^{\mathrm{miss}}$	> 350 GeV	> 300 GeV		
m_{T}^W	> 170 GeV	> 120 GeV		> 60 GeV
am_{T2}	> 175 GeV	$\in [100, 200]$ GeV	> 100 GeV	> 200 GeV
m_{T2}^{τ}	> 80 GeV	> 80 GeV		
$H_{\mathrm{T,sig}}^{\mathrm{miss}}$	> 12		_	
Jet $p_{\rm T}$	> 120, 80, 50, 25 GeV	> 120, 80, 50, 25 GeV		
$ \Delta\phi(j_i, E_{\mathrm{T}}^{\mathrm{miss}}) , i = 1, 2$	> 0.4		> 0.4	
# b-tagged jets	≥ 1	≥ 1	= 0	≥ 2
# large-radius jets	≥ 2	= 1		
Large-radius jet mass	> 80, 60 GeV	2	> 80 GeV	
Large-radius jet $p_{\rm T}$	$> 290 \text{ GeV}$ if $E_{\text{T}}^{\text{miss}} < 450 \text{ GeV}$ $> 200 \text{ GeV}$ if $E_{\text{T}}^{\text{miss}} > 450 \text{ GeV}$	>	• 200 GeV	

- TVR: $t\bar{t}$ validation region
- WVR: W+jets validation region
- STVR: single-top validation region

Observed and expected events

BERGISCHE UNIVERSITÄ WUPPERTAL

Region	\mathbf{SR}	TCR	WCR	TVR	WVR	STVR
Observed events	7	437	303	112	131	143
Fitted bkg events	6.1 ± 1.9	437 ± 21	303 ± 17	109 ± 35	127 ± 31	125 ± 27
Fitted $t\bar{t}$ events Fitted W + jets events Fitted singletop events Fitted $t\bar{t} + V$ events Fitted diboson events	$\begin{array}{c} 2.5 \pm 1.7 \\ 1.1 \pm 0.7 \\ 1.1 \pm 0.7 \\ 0.91 \pm 0.20 \\ 0.6 \pm 0.6 \end{array}$	$280 \pm 40 70 \pm 28 63 \pm 24 9.7 \pm 1.6 11 \pm 5$	$\begin{array}{c} 38 \pm 15 \\ 224 \pm 27 \\ 10 \pm 5 \\ 1.03 \pm 0.30 \\ 30 \pm 12 \end{array}$	90 ± 40 3.5 ± 2.0 4.2 ± 2.6 7.0 ± 1.4 1.3 ± 1.3	$\begin{array}{c} 15\pm8\\ 77\pm30\\ 3.3^{+3.5}_{-3.3}\\ 1.9\pm0.7\\ 31\pm9 \end{array}$	$53 \pm 23 \\ 15 \pm 7 \\ 46 \pm 17 \\ 8.3 \pm 1.4 \\ 1.7 \pm 1.1$
MC exp. bkg events	6.5	450	398	106	160	129

Signal region distributions

BERGISCHE UNIVERSITA WUPPERTAL

Expected mass limit

BERGISCHE UNIVERSITÄT WUPPERTAL

 $\mathcal{B}(Zt) + \mathcal{B}(Ht) + \mathcal{B}(Wb) < 100\%?$ **VATLAS**

What if there are more decay modes for the vector-like top?

 \rightarrow See for example:

J.A. Aguilar-Saavedra, D.E. López-Fogliani, C. Muñoz Novel signatures for vector-like quarks [JHEP 1706 (2017) 095] [arXiv:1705.02526]

Mikael Chala Direct Bounds on Heavy Top-Like Quarks With Standard and Exotic Decays [Phys. Rev. D96, 015028 (2017)] [arXiv:1705.03013]

Jan Küchler (Uni Wuppertal)

VLQ $Zt + X - 1\ell + E_{T}^{miss}$

Terascale - 28.11.2017

19+6 / 19+6