Search for leptoquarks in top quark final states at 13 TeV with CMS

Johannes Haller, Roman Kogler, Thomas Peiffer, <u>Arne Reimers</u>, Marc Stöver

28.11.2017

GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung

Motivation

Leptoquarks - $\mathrm{LQ} \rightarrow \mathrm{t} + \mathrm{l}$ decay channels

- Hypothetical new particles
- Predicted by many BSM theories
- Coupling to a lepton and a quark
- Fractional EM charge, Spin 0 or 1
- 13 ${\rm TeV}$ LHC: Pair-production dominating in $LQ \rightarrow t+l$ decay channel

Existing search (8 TeV)

• $LQ \rightarrow t + \tau_{had}$ channel exclusion limit: $M_{LQ} > 685 \, GeV$ [JHEP 07 (2015) 042]

Motivation

Example compositeness model:

Search for third generation LQ pairs in decay channels $LQ \to t\tau~\&~LQ \to t\mu$ at $\sqrt{s}=13~{\rm TeV}$

- Flavor anomalies in *b* sector e.g. [Phys. Rev. D 88 (2013) 094012]
- increasing cross section
- current limit for tτ channel: 685 GeV [JHEP 07 (2015) 042]
- tµ channel never investigated before

Search for $LQ \rightarrow t\mu$

Mass reconstruction

$\rm M_{LQ}$ Reconstruction

Requirements/Assumptions

- $LQ_{lep}: W_{lep} \rightarrow e/\mu + \nu$
- $LQ_{had}: W_{had} \to q\overline{q'}$
- $N_{jets} \ge 2$
- 2μ + at least 1ℓ

top hypotheses

- I Reconstruct ν
- 2 Build hypotheses t_{hyp}^{lep} ($\nu, \ell, jets$)
- ${\small 3}$ Build hypotheses t_{hyp}^{had} (jets)

LQ hypotheses

- $\bullet~$ Build hypotheses $LQ_{\rm hyp}^{\rm lep}~(t_{\rm hyp}^{\rm lep},\mu^{\rm os})$
- Build hypotheses LQ_{hyp}^{had} (t_{hyp}^{had} , μ^{ss})
- Choose best set of hypotheses based on a χ^2

• Final
$$M_{LQ}^{rec} = (M_{LQ}^{had} + M_{LQ}^{lep})/2$$

Background Estimation - $t\bar{t} + DY$

- Go from 2μ into 2e final state \rightarrow Very similar CR
- Shapes of CR and SR do not agree well enough
- Need sophisticated extrapolation procedure
- Shape and normalization taken from ratio of signal region and control region in MC

Extrapolation function α :

- Fit $\mathrm{S}_{\mathrm{T}}\,$ in SR and CR with function F
- $\alpha(S_T) = \frac{F^{SR}(S_T)}{F^{CR}(S_T)}$
- Simultaneous correction of shape and normalization

Background Estimation - $\mathrm{t}\bar{\mathrm{t}}$ + DY

Expected sensitivity

- Combined binned likelihood template fit
- All uncertainties included

Introduction

Search for $LQ \rightarrow t\tau$

Analysis strategy

Analysis strategy

LQ
ightarrow t au Analysis

Background estimation - $t\bar{t} + W + jets$ (fake τ_h)

$LQ \rightarrow t\tau$

Results

Final distributions ($\mu + \tau_{\rm h} + \text{jets channel}$)

Results

Expected sensitivity

- binned maximum likelihood fit
- combination of all categories
- systematic uncertainties included

Conclusion & Outlook

Conclusion

- Searches for LQ pair production in $t\mu$ and $t\tau$ channels
- Expected sensitivities with 35.9 fb⁻¹ at 13 TeV:
 - $t\mu$: $M_{LQ} \le 1470 \, GeV$ (first analysis)
 - $t\tau: M_{LQ} \le 930 \, GeV$ (8 TeV: 685 GeV)
- Data driven background methods

<u>Outlook</u>

- Analyses complete
- Combination planned

