# Identifying future SUSY searches with SmodelS

Federico Ambrogi (HEPHY Vienna), Sam Bein (Uni Hamburg), <u>Malte</u> <u>Mrowietz</u> (Uni Hamburg), Peter Schleper (Uni Hamburg), Jory Sonneveld (Uni Hamburg) Physics at the Terascale - Hamburg, 28.11.2017



### **Contents and Motivation**

- A lot of SUSY parameter space already excluded, many searches interpreted in terms of simplified models: What parameter space is not covered?
- Simplified Model Spectra (SmodelS, arXiv:1701.06586) can **identify uncovered signatures** using simplified model decomposition
- $\rightarrow$  Use SmodelS on SUSY parameter scan.
- Identify signatures worth looking for

# Excluding parameter space

The straightforward approach (e.g. used by CheckMATE) arXiv:1611.09856, arXiv:1312.2591

- Take full model, simulate events, reproduce analyses with simulated events, compare to experiment database
- →Model is (not) excluded, get upper limits
- Drawback: Event simulation takes a lot of time
- Can this be done without simulation? →SmodelS



### Excluding models with SmodelS

SmodelS process (left, arXiv:1412.1745), UL map example (right, arXiv:1704.07781)



# SmodelS: Missing topologies

- Missing topologies: No analysis exists in the database for a predicted simplified model
- →Can help to decide on future searches! For example:
  - Run SmodelS on set of pMSSM points
  - Find important missing topology (e.g. one that occurs in many points)
  - Perform search for topology, incorporate UL map into SmodelS database
  - $\circ \rightarrow$  Exclude parameter space
- Outside grid topologies: Analysis exists in database, but not for needed masses



# Using SmodelS: pMSSM parameter scan

For study of the pMSSM, a Monte Carlo Markov Chain scan was used (arXiv:1606.03577)

- ~7000 randomly selected points: Masses < 3TeV, prompt BSM particles, low energy constraints
- ~3500 points <u>not</u> excluded after LHC run 1
- Recent: Further exclusion by CMS-SUS-16-033 (jets+MET, E<sub>CMS</sub>= 13 TeV, L = 35.9 fb<sup>-1</sup>)

 $\rightarrow$  329 remaining points

# Common missing simplified models

Results of running SmodelS on remaining pMSSM points (similar studies: arXiv:1606.03577 (Same scan, lists missing models); arXiv:1707.09036 (SmodelS, ATLAS scan))

- Electroweak topologies among most occurring missing models
- Outside grid topologies included here $\rightarrow$ T2 in plot



### TChipChimWoffWoff: Weight distribution

- Weight can be translated into events produced for given luminosity
- →Number of produced events is indicator for search potential

TChipChimWoffWoff: Weight vs. Lsp-Chargino mass splitting



# TChipChimWoffWoff: A closer look

- Model is already constrained for high mass splittings (TChiWW / TChipChimWW)
- Expect soft final state, ISR induced MET
- Added incentive to explore TChipChimWoffWoff: It tends to occur in natural models
- →Use ∆EW as variable for naturalness (Phys. Rev. D 88.055026)

TChipChimWoffWoff



### TChipChimWoffWoff: Naturalness



 $\Delta EW$ 

# Summary

- SmodelS is a fast tool to exclude models/theories
- SmodelS also identifies simplified models not covered by searches, which can be used as a decider for future analyses
- Presented study: Run SmodelS on 329 pMSSM points that are not excluded by CMS →interest in TChipChimWoffWoff & TChiChipmWoffZoff
- Preliminary analysis ongoing



# Backup

# SmodelS: Decomposition

A closer look at decomposition:

- Start with production cross section for branch mothers
- Sequentially add vertices/decays according to the decay table of the input model
- At each step, compute the weight:

weight =  $\sigma \cdot \prod BR_i$ 

- Decomposition ends when
  - Both branches end in the LSP  $\rightarrow$ Simplified model added to spectrum
  - The weight is below a minimum value
     →Simplified model and all derived models
     <u>not</u> part of spectrum



### TChiChipmWoffZoff: Naturalness



### TChiChipmWoffZoff: Weight distribution



### Finalstates in the 'None' category

unweighted finalstates in None Category



### **SmodelS: Assumptions**

See SmodelS Manual, section 2 (arXiv:1701,06586)

- Production mode does not significantly influence event kinematics
- No offshell sparticles in cascade, virtual particles replaced by effective vertex
- No quantum numbers (except mass) are considered
- Narrow width approximation for BSM particles
- Z2 symmetry is required
- No significant differences when applying efficiency maps created from simplified models to full models
- Efficiencies don't change significantly from simplified to full model

### SmodelS: Assumption studies

- arXiv:1410.0965 (Influence of different production modes in squark simplified models)
- arXiv:1501.03942 (Influence of spin structure in dijet+MET finalstate)
- arXiv:1503.02960 (see above, dilepton+MET)
- arXiv:160702050 (see above, ttbar+MET)

SmodelS is **not** safe in Mono-X searches for dark matter

#### Scan parameters

 $\begin{array}{rrrr} -3 \leq M_1, M_2 \leq 3 \, {\rm TeV}, \\ 0 \leq M_3 \leq 3 \, {\rm TeV}, \\ -3 \leq \mu \leq 3 \, {\rm TeV}, \\ 0 \leq m_A \leq 3 \, {\rm TeV}, \\ 2 \leq \ \tan \beta \leq 60, \end{array}$ 

 $0 \le m_{\tilde{Q}_{1,2}}, m_{\tilde{U}_{1,2}}, m_{\tilde{D}_{1,2}}, m_{\tilde{L}_{1,2}}, m_{\tilde{E}_{1,2}}, m_{\tilde{Q}_3}, m_{\tilde{U}_3}, m_{\tilde{D}_3}, m_{\tilde{L}_3}, m_{\tilde{E}_3} \le 3 \text{ TeV},$  $-7 \le A_t, A_b, A_\tau \le 7 \text{ TeV},$ 

### Scan: Low energy constraints

| i  | Observable                         | Constraint                                                                                | Likelihood function                                               | Comment   |
|----|------------------------------------|-------------------------------------------------------------------------------------------|-------------------------------------------------------------------|-----------|
|    | $\mu_i(\theta)$                    | $D_i^{\text{non-DCS}}$                                                                    | $L[D_i^{\text{non-DCS}} \mu_i(\theta)]$                           |           |
| 1  | $\mathcal{B}(b \to s\gamma)$ [45]  | $(3.43 \pm 0.21^{\text{stat}} \pm 0.24^{\text{th}} \pm 0.07^{\text{sys}}) \times 10^{-4}$ | Gaussian                                                          | reweight  |
| 2  | $\mathcal{B}(B_s \to \mu\mu)$ [46] | $(2.9\pm0.7\pm0.29^{ m th})	imes10^{-9}$                                                  | Gaussian                                                          | reweight  |
| 3  | $R(B \rightarrow \tau \nu)$ [45]   | $1.04 \pm 0.34$                                                                           | Gaussian                                                          | reweight  |
| 4  | $\Delta a_{\mu}$ [47]              | $(26.1 \pm 6.3^{\text{exp}} \pm 4.9^{\text{SM}} \pm 10.0^{\text{SUSY}}) \times 10^{-10}$  | Gaussian                                                          |           |
| 5  | $\alpha_{\rm s}(m_{\rm Z})$ 48     | $0.1184 \pm 0.0007$                                                                       | Gaussian                                                          |           |
| 6  | m <sub>t</sub> [49]                | $173.20 \pm 0.87^{\text{stat}} \pm 1.3^{\text{sys}} \text{ GeV}$                          | Gaussian                                                          | reweight  |
| 7  | $m_{\rm b}(m_{\rm b})$ [48]        | $4.19^{+0.18}_{-0.06}{ m GeV}$                                                            | Two-sided Gaussian                                                |           |
| 8  | $m_{ m h}$                         | LHC: $m_{\rm h}^{\rm low} = 120 \text{GeV},  m_{\rm h}^{\rm high} = 130 \text{GeV}$       | 1 if $m_{\rm h}^{\rm low} \le m_{\rm h} \le m_{\rm h}^{\rm high}$ | reweight  |
|    |                                    |                                                                                           | 0 if $m_h < m_h^{\text{low}}$ or $m_h > m_h^{\text{high}}$        |           |
| 9  | $\mu_{\rm h}$                      | CMS and ATLAS in LHC Run 1, Tevatron                                                      | LILITH 1.01 [50] 51]                                              | post-MCMC |
| 10 | sparticle masses                   | LEP [52]                                                                                  | 1 if allowed                                                      |           |
|    |                                    | (via MICROMEGAs [53+55])                                                                  | 0 if excluded                                                     |           |

### Sources

- LHC picture: <u>http://www.pindex.com/uploads/post\_images/original/image\_1542.png</u>
- CMS picture: <u>http://www.physikblog.eu/wp-content/uploads/2008/09/cms\_aufbau.png</u>
- SM picture: <u>http://cms.web.cern.ch/sites/cms.web.cern.ch/files/styles/large/public/field/image/CMSResult130628\_Figure01.jpg?itok=G</u> <u>buSst8u</u>
- Gravity picture: <a href="http://discovermagazine.com/~/media/Images/Issues/2013/July-Aug/apple%20gravity.jpg">http://discovermagazine.com/~/media/Images/Issues/2013/July-Aug/apple%20gravity.jpg</a>
- Dark matter picture: <u>http://www.astronomy.ohio-state.edu/~pogge/Ast162/Unit6/Images/RotCurve2.gif</u>
- Baryon asymmetry picture: <u>http://www.fnal.gov/pub/today/archive/archive\_2013/images/ROW\_Figure01\_131031.jpg</u>
- Running couplings picture: <u>https://i.stack.imgur.com/3gARs.png</u>
- Higgs loop contributions picture: <u>http://scienceblogs.com/startswithabang/files/2013/05/1000px-Hqmc-vector.png</u>
- SM parameters: https://i.pinimg.com/originals/9d/4b/fd/9d4bfdeb01d1c40a123cea35ba40a4db.jpg