Model Unspecific Search in CMS (MUSIC) at 13 TeV

Recent Efforts with 2016 data

Deborah Duchardt, Simon Knutzen, Jonas Lieb, **Tobias Pook**, Jonas Roemer Terascale Workshop - November 28th 2017

Dataset & Classification

Sensitivity

Global Results

Conclusion

Outline

1 Introduction

- 2 Dataset & Classification
- 3 Sensitivity
- 4 Global Results
- 5 Conclusion

Goal: Scan hundreds of final states for deviations and find most significant regions

Classification:

- Select well reconstructed + isolated physics objects in event (e, μ, γ, b, jet, MET)
- Sort each event based on physics object content into event class

Scanning:

- Compare data to MC in each connected bin region → p-value
- ► Correct for look-elsewhere-effect using pseudo experiments → p̃ - value

Global Results

Conclusion

Sensitivity

Dataset & Classification

Introduction

$$\sigma_{SM} = \sqrt{\sigma_{MC,stat}^2 + \sigma_{MC,sys}^2}$$

Dataset & Classification

Sensitivity

Global Results

Conclusion

Look-Else-Where Effect Correction

Considering many regions in **many distributions** it becomes more probable to see a large deviation somewhere in the distribution only by chance due to statistical fluctuations.

Approximation with Toy Experiments

- Randomize MC expectation bin by bin, taking all known uncertainties into account (up to 10⁵ times)
- Scan for most significant region
- Count pseudo exp. with smaller p-value than data

p̃ Definition

 $ilde{
ho} = rac{ ext{number of pseudo experiments with } p_{pseudo} < p_{data}}{ ext{number of pseudo experiment}}$

Global Results

Conclusion

6

Monte Carlo Sets

Pythia8			
$W \to I \nu$	high mass tails		
Powheg			
ZZ ightarrow 2/2 $ u$		ZZ ightarrow 4I	
$W\!Z ightarrow 3 l u$		$W\!Z ightarrow l u q q$	
WW ightarrow 4q		WW ightarrow 2/2 $ u$	bulk & mass binned
Z ightarrow 2I	high mass binned	tt	bulk & mass binned
single-top	tW-channel t & t	single-top	t-channel t & t
Sherpa			
$\gamma\gamma+{\sf jets}$	mass binned		
Madgraph			
$W\gamma ightarrow I u\gamma$		γ +Jets	HT binned
ttZ + jets		QCD	HT binned
AMC@NLO			
W + Jets	bulk & Pt binned	single-top	s-channel
$t\gamma$ + jets		$tt\gamma$ + jets	
$t\overline{t}\gamma\gamma$		tītī	
$t \overline{t} W$ jets $ ightarrow q q$		ZZ ightarrow 4q	
ZZ ightarrow 2/2 q		ZZ ightarrow 2q2 u	
$W\!Z ightarrow 2/2q$		$W\!Z ightarrow 1/3 u$	
$W\!Z ightarrow 1/1 u 2q$		WWW	
WWZ		ZZZ	
$WW\gamma$		$WZ\gamma$	
Waa		$WZ\gamma$	

served classes of classes of 1200 1200 1200 1000 lata tt Mixed Di-Boson + Jets Drell-Yan 7+γ W + Jets Tri-Boson Multi-Jet γγ Single-Top t + γ 4.5 800 600 400 200 exclusive iet-inclusive inclusive

Do we really need to consider so many processes ?

- Only MC classes with N_{MC} > 0.01
- Color indicates process with N_{MC} > 50% of total yield
- Number of classes with data smaller than, due to N_{MC} < 1 cases

Introduction Dataset & Classification Sensitivity Global Results Conclusion

Sensitivity

Global Results

Conclusion

9

Examples: $1 e 1 \mu 1 \text{ jet} + \text{MET}$ incl.

Example for two non-significant excesses found by scan algorithm

Sensitivity for several models studied in master thesis by J. Lieb

- MUSiC efforts are ongoing to analyze 2016 dataset
- Set of considered objects extended with b-jets
- Increase in number of considered events using single photon data stream
- MUSiC analysis for 2017 dataset will start soon with additional manpower

