Studies for BDT and Multi-Bin based Signal Regions for the SUSY 0-lepton Analysis with the ATLAS Experiment

Manuel Guth

11th Annual Meeting of the Helmholtz Alliance "Physics at the Terascale"

q

q

Q

SUSY 0-lepton Analysis

- Strong SUSY production with focus on signature with
 - $E_{\rm T}^{\rm miss}$ from LSP (lightest supersymmetric particle)
 - Jets
 - No leptons
- ATLAS Note presented at Moriond 2017 (ATLAS-CONF-2017-022) with 36.1 fb⁻¹
 - 8 signal regions for direct squark decay
 - 7 signal regions for direct gluino decay
 - Optimised for different mass regions

p

Ø

p

p

q

 \boldsymbol{Q}

Q

q

SUSY 0-lepton Analysis

- Important variables which are used in current analysis ATLAS-CONF-2017-022:
 - Missing transverse energy $E_{\rm T}^{\rm miss}$ or MET
 - Effective mass $m_{\text{eff}}(\text{incl}) = \sum_{i=1}^{N_{\text{Jet}}} |\mathbf{p}_{\text{T}}^{(i)}| + E_{\text{T}}^{\text{miss}}$
 - dPhi = $\Delta \phi(\text{jet}_{1,2(3)}, \vec{E}_T^{\text{miss}})_{\text{min}}$, P_T(jet), | η |(jet), Aplanarity Ap

$$metSig = E_{\rm T}^{\rm miss} / \sqrt{m_{\rm eff}({\rm incl}) - E_{\rm T}^{\rm miss}}$$

- Only Cut & Count analyses were implemented so far
- Signal Regions (SR) defined depending on number of jets and m_{eff}(incl) cut

p

10

p

 \mathcal{D}

Current Status SUSY 0-lepton analysis

What could be the improvement by using BDT or multi-bin analyses?

UNI FREIBURG

General Idea

- Using BDT and multi-bin analysis to optimise significance in different signal regions (SR)
- Multi-bin: slicing data sample into different orthogonal bins
- Retrieving new cut definitions from machine learning techniques
- Comparison with reoptimised Cut & Count
- Signal: Squark and Gluino production with direct decays to neutralinos
 - Background: W, Z, Top, Diboson, QCD negligible
- Working with luminosity of 100 fb⁻¹ for squarks & 120fb⁻¹ for gluinos (~end of Run 2)

Working Point and Significance

- Scanning whole range of BDT scores and choose point with highest significance
- Significance calculated with
 - RooStats.NumberCountingUtils.BinomialExpZ()-function
 - Uncertainty calculated depending on number of background events (function from SUSY 0-lepton discovery prospects analysis)

Direct Squark Production

Finding Variable Combination

- Samples splitted into training and testing samples for BDT (EventNumber)
 - Cuts for non trained variables are set to default from current analysis (here SR with 2j and m_{eff}(incl) cut of 1600 GeV)
- Significance
 - Default analysis: 2.11 - -
 - Reoptimised Cut & Count: 2.61★

By adding variables significance improves

Separation in nJet slices

ISR & FSR increase number of jets → "different physics"

- Mostly gluon jets and softer
- Division of training in different N_{jet} slices \rightarrow improvement of ~50%

Contour Plots - Direct Squark Production

- BDT shows better results than Cut & Count
- Improvement with nJet separation
- Combination of both
 BDT and N_{jet} separation
 gives best result
- Using more variables for multi-bin analysis can improve results

Cut & Count Multi-Bin Analysis

- nJet separation improved results
 - Adding more variables might provide further improvements

2

3

4

5

6

- Additional binning in $m_{\text{eff}}(\text{incl})$ and metSig
- Cut & Count training of remaining variables for each possible bin combination
- Looking for technique to reduce number of bins
 - Currently up to 144 bins (4x6x6)

N _{Jet}	m _{eff} (incl) [GeV]	metSig
==2	1200 - 1600	12 - 16
==3	1600 - 2000	16 - 20
==4	2000 - 2400	20 - 24
≥5	2400 - 2800	24 - 28
	2800 - 3200	28 - 32
	≥3200	≥32

Cut & Count Multi-Bin Analysis

Summary Plot - Direct Squark Production

Direct Gluino Production

 \boldsymbol{P}

Direct Gluino Production

- Switched to 120 fb⁻¹
- Using Signal Regions with similar kinematics instead of single points
- Almost no gain with N_{jet} separation
- 13 Input variables
- Can we reduce number of input variables without loosing much sensitivity?

16

BDT Variable Study - for SR BDT2

BDT Variable Study - for SR BDT2

- New simplified variable combination slightly worse but simpler
- Significant improvement with N_{trk} variable
 - Gluon jets have more tracks than quark jets
 - background: gluon dominated
 - signal: quark dominated

Further approach: trying to understand the gain and translate into new cut definitions

Summary

- Squark Study
 - BDT shows improvement with respect to Cut & Count
 - Regions with higher LSP (neutralino) masses show greater improvement than with high squark masses
 - Multibin analysis with more variables (m_{eff}(incl), metSig) shows large improvement better than BDT
 - Taking complexity of analysis into account, multi-bin analysis with N_{Jet} and m_{eff}(incl) seems to be best
- Gluino Study
 - Using new signal region definition (more statistics for training and better results)
 - Considering gain vs. simplicity in BDT2 SR: m_{eff}(incl), met, jetPt (1-4), Ap as input for BDT
 - N_{trk} variable improves results significantly (gain of ~75 GeV in $m_{\tilde{\chi}_1^0}$)
 - Further approach: Trying to extract new cuts from BDT or maybe also neural networks

Backup

SUSY 0-lepton Analysis - Variables

- Missing transverse energy $E_{\mathrm{T}}^{\mathrm{miss}}$ or MET
- Effective mass $m_{\text{eff}} \equiv \sum_{i=1}^{n} |\mathbf{p}_{\text{T}}^{(i)}| + E_{\text{T}}^{\text{miss}}$ $m_{\text{eff}}(\text{incl}) = \sum_{i=1}^{N_{\text{Jet}}} |\mathbf{p}_{\text{T}}^{(i)}| + E_{\text{T}}^{\text{miss}}$
- dPhi = $\Delta \phi(\text{jet}_{1,2(3)}, \vec{E}_{T}^{\text{miss}})_{\text{min}}$ dPhiR = $\Delta \phi(\text{jet}_{i>3}, \vec{E}_{T}^{\text{miss}})_{\text{min}}$
- jetPt
- jetEta, Eta = max (η_1, η_2) , EtaR = max $(\eta_1, \eta_2, \eta_3, \eta_4)$
- Aplanarity Ap = $3/2\lambda_3$, with λ_3 smallest eigenvalue of normalised momentum tensor

 $metSig = E_{\rm T}^{\rm miss} / \sqrt{m_{\rm eff}(\rm inc) - E_{\rm T}^{\rm miss}}$

Signal Region Definition Current Analysis

Targeted signal	$\tilde{q}\tilde{q}, \tilde{q} \to q\tilde{\chi}_1^0$							
Dequirement	Signal Region [Meff-]							
Kequitement	2j-1200	2j-1600	2j-2000	2j-2400	2j-2800	2j-3600	2j-2100	3j-1300
$E_{\rm T}^{\rm miss}$ [GeV] >	250							
$p_{\rm T}(j_1) [{\rm GeV}] >$	250	300	350			600	700	
$p_{\rm T}(j_2) [{\rm GeV}] >$	250	300	00 350			50		
$p_{\rm T}(j_3) [{\rm GeV}] >$						•	50	
$ \eta(j_{1,2}) < 0.8$			1.2			_	•	
$\Delta \phi(\text{jet}_{1,2,(3)}, \vec{E}_{\text{T}}^{\text{miss}})_{\text{min}} >$	0.8					0.4		
$\Delta \phi(\text{jet}_{i>3}, \vec{E}_{T}^{\text{miss}})_{\text{min}} >$	0.4					0.2		
$E_{\rm T}^{\rm miss}/\sqrt{H_{\rm T}} [{\rm GeV}^{1/2}] >$	14		18			26	16	
$m_{\rm eff}({\rm incl.}) [{\rm GeV}] >$	1200	1600	2000 2400 2800 3600			2100	1300	

Targeted signal	$\tilde{g}\tilde{g}, \tilde{g} \to q\bar{q}\tilde{\chi}_1^0$							
Dequirement	Signal Region [Meff-]							
Kequitement	4j-1000	4j-1400	4j-1800	4j-2200	4j-2600	4j-3000	5j-1700	
$E_{\rm T}^{\rm miss}$ [GeV] >	250							
$p_{\rm T}(j_1) [{\rm GeV}] >$	200						700	
$p_{\rm T}(j_4) [{\rm GeV}] >$	100			150		50		
$p_{\rm T}(j_5) [{\rm GeV}] >$	_						50	
$ \eta(j_{1,2,3,4}) <$	1.2 2.0					_		
$\Delta \phi(\text{jet}_{1,2,(3)}, \vec{E}_{\text{T}}^{\text{miss}})_{\text{min}} >$	0.4							
$\Delta \phi(\text{jet}_{i>3}, \vec{E}_{T}^{\text{miss}})_{\text{min}} >$	0.4						0.2	
$E_{\rm T}^{\rm miss}/m_{\rm eff}(N_{\rm j}) >$	0.3	0.25			0.2		0.3	
Aplanarity >	0.04					_		
$m_{\rm eff}({\rm incl.}) [{\rm GeV}] >$	1000	1400	1800	2200	2600	3000	1700	

ATLAS-CONF-2017-022

BDT Signal Region Definitions - Original Definition

 $\label{eq:preselection} \begin{array}{l} \text{BDT1, BDT2} \\ \text{nJet} > 3, \, M_{eff} > 1400, \, E_T^{miss} > 300, \, 1^{\text{st}} \, \text{jet} \, \mathbb{P}_{\mathrm{T}} > 200, \, E_T^{miss} / M_{eff} > 0.2, \, \Delta\phi(E_T^{miss}, j_{1,2,3}) > 0.4 \\ \text{BDT3, BDT4} \\ \text{nJet} > 3, \, M_{eff} > 800, \, E_T^{miss} > 300, \, 1^{\text{st}} \, \text{jet} \, \mathbb{P}_{\mathrm{T}} > 200, \, E_T^{miss} / M_{eff} > 0.2, \, \Delta\phi(E_T^{miss}, j_{1,2,3}) > 0.4 \\ \text{BDT5} \\ \text{nJet} > 1, \, M_{eff} > 1400, \, E_T^{miss} > 300, \, 1^{\text{st}} \, \text{jet} \, \mathbb{P}_{\mathrm{T}} > 200, \, E_T^{miss} / \sqrt{H_T} > 12, \, \Delta\phi(E_T^{miss}, j_{1,2,3}) > 0.4 \\ \end{array}$

Input variable

BDT1, BDT2, BDT3, BDT4 nJet, M_{eff} , E_T^{miss}/M_{eff} , $\Delta\phi(E_T^{miss}, j_{i>3})$, Aplanarity, 1st - 4th jet P_T, 1st - 4th jet η

BDT5

nJet,
$$M_{eff}$$
, $E_T^{miss}/\sqrt{H_T}$, $\Delta\phi(E_T^{miss}, j_{1,2,3})$, $\Delta\phi(E_T^{miss}, j_{i>3})$,
Aplanarity, 1st -4th jet P_T, 1st-4th jet η

BDT Variable Study - Oring

Significance Function

f1 = R00T.TF1("f1","[0]+[1]/pow(x,[2])",1,500.)
f1.SetParameter(0,0.077)
f1.SetParameter(1,0.40)
f1.SetParameter(2,0.53)
backgroundError=f1.Eval(nbBkg)
significance = RooStats.NumberCountingUtils.BinomialExpZ(nbSig, nbBkg, backgroundError)