Temperature distribution in the target for the undulator based ILC positron source

Subtitle of Presentation

Felix Dietrich / Sabine Riemann / Andriy Ushakov / Gudrid Moortgat-Pick Hamburg, 28.11.17

Outline

01 ILC-Positron Source

- Setup
- Functional principal

02 ILC- Positron Source Target

- Challenges
- Magnetic bearings
- Cooling by thermal radiation

03 Simulation of the target temperature

- Simulation in ANSYS
- Solution for some challenges
- Preliminary simulation for a sliced Target

04 Summery

ILC-Positron Source

ILC-Positron Source

Setup

- Source needs three major parts to create positrons
 - Helical Undulator (max total length: 264 m [see also talk from Khaled Alharbi])
 - Target wheel r = 510 mm, at 250 GeV thickness = 7 mm
 - Target Material: Ti6Al4V
 - Positron capture: Flux concentrator/Quarter-Wave-Transformer
- Focus of this talk: e+ target

ILC-Positron Source

Positron Production / Functional Principal

- Electrons pass the helical Undulator
- Polarized Photon beam hits the Target
- Pair production of Positrons and Electrons
 - Positrons are accelerated
 - Electrons are separated and dumped

Challenge

- Energy deposition in target ~few kW, 2kW at E_{cm}=250GeV
 - Photon beam size ~2mm
- To avoid damage: the Target wheel rotates at 2000 rpm
- Photon beam hits target at a radius of 500 mm → speed of target 100 m/s
- Without rotation → Target would melt
- Focused photon beam is smeared over ~7.5cm
- Target heats up locally → heat gets distributed slowly due to low thermal conductivity of Ti6Al4V

Magnetic Bearings

- Target must be in vacuum (stationary windows would melt)
- Target is mounted horizontally
- Target wheel is loaded on Magnetic Bearings
 → weight of wheel is an issue
- Every effect like unbalanced masses or vibrations has to be studied carefully

Cooling the target by thermal radiation

- Each Pulse yields instantaneous temperature rise by ~80K (E_{cm} = 250GeV)
- Water cooling of the target wheel is challenging
- good cooling is needed applicable for the wheel spinning in vacuum
- Option: radiation cooling
 - Contactless cooling
 - No water is needed in the rotating Target
 - The heat is radiated from the spinning wheel to a stationary water-cooled cooler
 - Surfaces have to be cooled
 - QWT might be a problem (Surface reduction)

$$P \sim \sigma \varepsilon A \left(T_{t \operatorname{arg} et}^4 - T_{cooler}^4 \right)$$

Simulation in ANSYS / Setup

- Evaluation of Temperature Profile
 - Input: FLUKA simulation of energy deposition from Dr. Andriy Ushakov
- To reduce calculation time only one slice of the wheel is simulated
- Emission coefficients of the surfaces:
 - Ti = 0.2
 - Cu = 0.8
- Material data is heat dependent (density, heat capacity, thermal conductivity, mechanical parameters)

Simulation in ANSYS / results

- Different approaches showed: Easiest working solution is a Titan Disk (250 GeV)
- Findings from test beam experiments with Ti6Al4V show that maximum temperatures until 700°C are acceptable
 - design must ensure that maximum temperature does not exceed 700°C
 - currently at a maximum of ~550 °C
- Heat distribution shows high temperatures on the rim and lower temperatures at lower radius
- That means: although the surface of the hot outer parts is relatively small it is very important for cooling
- This heat distribution creates hoop stress in the outer Target ring which exceeds the fatigue limit

Solution for some challenges

- To reduce hoop stress
 - Create a sliced Target
 - Rotation frequency has to be designed accordingly
- To improve thermal radiation efficiency and to reduce temperatures in Target
 - Cooling Fins can be used (radiating surface is increased)
 - Partially substitution of Target-material by material with high thermal conductivity, i.e. Copper (Heat gets distributed more evenly to a larger surface)
 - A connection between target rim and radiator material has to be designed and tested

Preliminary simulation for a sliced Target

- Slices can drastically reduce hoop stress
- The stress at the 'bottom' at the gap has still to be analyzed
- Results shown here are preliminary

Summary

- Target faces large heat issues
- · But cooling by thermal radiation works
- It still needs optimization and construction work
- Prototype to test the cooling efficiency is highly desired, in particular to optimize the cooling in case of higher energy deposition in the target (polarization upgrade); a design is in work
- · Elements like magnetic bearings still have to be designed
- Positron beam produced by the undulator based source is polarized
 - benefit for physics analysis is under study: 25% higher effective luminosity can be achieved for s-channel processes with P = (80;30)