Challenging the Littlest Higgs by LHC 13 TeV data

Shim, So Young

DESY

November 28, 2017

in collaboration with Daniel Dercks, Gudrid Moortgat-Pick and Juergen Reuter

Shim, So Young (DESY)

Littlest Higgs with T-parity

November 28, 2017 1 / 16

Littlest Higgs model

- with T-parity (NOT Time-Reversal)
- with broken T-parity

2 LHC analyses with CheckMATE

3 Results

- Fermion universal case
- Heavy q_H case

Hierarchy Problem

Heavy Higgs?

Naturally, $m_h \sim \mathcal{O}(\Lambda^2)$ $m_h^2 = m_0^2 + \Lambda^2 \times (\text{loop factors})$

Light Higgs!

By EW precision observables, Higgs mass was favoured as $m_h < 0.5~{\rm TeV}$

Hierarchy Problem

$m_h \ll \Lambda \Leftrightarrow$ Fine-Tuning!

Shim, So Young (DESY)

Little Higgs

Collective Symmetry Breaking

2 different global symmetries; If one of them was unbroken, Higgs exact Goldstone boson and massless. CSB breaks both symmetries at the same time: Higgs naturally light.

Littlest Higgs model group structure SU(5)/SO(5) $(SU(2)_i \otimes U(1)_i)^2/(SU(2)_W \otimes U(1)_Y)$ $W^a_{1\mu}, W^a_{2\mu} \Rightarrow W^a_H, W^a_L$ $B_{1\mu}, B_{2\mu}, \Rightarrow B_H, B_L$

T-parity

Z_2 symmetry acting on TeV scale particles

 $W^a_{2\mu} \leftrightarrow W^a_{1\mu}, B_{1\mu} \leftrightarrow B_{2\mu};$ Similar to R-parity in SUSY and KK-parity in extra dimension

T-parity prevents large corrections to the EWPO to happen \rightarrow Bound on f weaker \rightarrow the model is less fine tuned.

Shim, So Young (DESY)

Littlest Higgs with T-parity model contents

Particles

- Heavy Gauge bosons; $W^{\pm}_{H,-}$, $Z_{H,-}$ and $A_{H,-}$
- Heavy fermions; $u_{H,-}, d_{H,-}, \cdots$ $e_{H,-}, \ell_{H,-}, \cdots$
- vectorlike top quark; T_{\pm} ; a cancellon for the divergence of Higgs-top loop interaction

Mass

- Heavy Gauge bosons; $\sim gf$ where f is symmetry breaking scale
- Heavy fermions;

 $m_{u_H} \sim m_{d_H} \sim \kappa_q f$, $m_{e_H} \sim m_{\ell_H} \sim \kappa_\ell f$, where κ is Yukawa coupling parameter of T-parity odd fermions

• vectorlike top quark; $m_{T_+} \sim f \sqrt{\lambda_1^2 + \lambda_2^2}$

If T-parity is conserved,

Heavy photon A_H cannot decay because it is the lightest T-parity odd particle.

Shim, So Young (DESY)

Littlest Higgs with T-parity

November 28, 2017 6 / 16

Wess-Zumino-Witten term

Christopher T. Hill, Richard J. Hill [arXiv:0705.0697]

A. Freitas, P. Schwaller and D. Wyler [arXiv:0806.3674]

Because of the nontrivial vacuum structure

$$\Gamma_{WZW} = \frac{N}{48\pi^2} (\Gamma_0(\Sigma) + \Gamma(\Sigma, A_l, A_r))$$

Broken T-parity

Branching Ratio of A_H

- $f \sim 1200 \text{ GeV}$, threshold of the on-shell decay $A_H \rightarrow WW$
- In on-shell region $A_H \rightarrow WW$ has the largest branching ratio, in off-shell region the loop-induced decays become important.

Shim, So Young (DESY)

LHC Phemonenology

Considered LHC processes

$$pp \to q_H V_H,$$

$$3 \ pp \to f_H \bar{f}_H$$

- $) pp \to T_+T_+, T_-T_-$

6
$$pp \to T_+ \bar{q}, \bar{T}_+ q, T_+ W^{\pm}, \bar{T}_+ W^{\pm}$$

Scan parameters

$\left\{ \; f \; \text{,} \; \kappa_q \; \text{,} \; \kappa_\ell \; ight\}$

- All cross sections drop with f because all masses increase with f.
- Heavy fermions' mass terms depend on κ but other particles do not.
 - \Rightarrow Bound will depend on both f and κ

Shim, So Young (DESY)

LHC Phemonenology

 q_H branching ratio

Decay examples	
• $W_H \rightarrow W A_H$	
• $Z_H \rightarrow H A_H$	

- $pp \rightarrow q_H q_H \rightarrow qq A_H A_H$ $pp \rightarrow V_H V_H \rightarrow WW A_H A_H$
- For broken T-parity cases, A_H decays and produces even more final state particles with less ₽_T

Benchmark Scenarios

with conserved T-parity

(1) $\kappa_q = \kappa_\ell$: Fermion Universality (2) $\kappa_q = 4.0$: Heavy q_H

with T-parity violation

1 $\kappa_q = \kappa_\ell$: Fermion Universality **2** $\kappa_q = 4.0$: Heavy q_H

Shim, So Young (DESY)

Littlest Higgs with T-parity

November 28, 2017 10 / 16

CheckMATE

- Daniel Dercks et al., CheckMATE2, [arXiv:1611.09856]
- Automatized program for testing new physics at LHC
- Based on root, MadGraph, Pythia 8, Delphes
- Managing event generating, showering, hadronising by itself
- UFO model file is enough to run CheckMATE
- SUSY analyses for LHC 8 TeV, 13 TeVand 14 TeV available

Figure 1: Flow chart to demonstrate the chain of data processing within CheckMATE.

イロト イヨト イヨト イヨト

э

Fermion universal case with conserved T-parity

• $\kappa_q = \kappa_l$

- A_H does not decay.
- For f < 1 TeV, vector boson production produces κ -independent bound.
- For f > 1 TeV, heavy quarks produce κ -dependent bound.

 CheckMATE tests many analyses, this is the most sensitive for this model

(日) (同) (三) (三)

- Search designed for squarks and gluinos, similar topology as q_H in our model
- atlas_conf_2017_022: squarks and gluinos; 0ℓ, 2-6 jets + ₽T

12 / 16

Fermion universal case with broken T-parity

- A_H decays .
- At f < 1.2 TeV, off-shell decay happen and many possible final states appear
- CheckMATE determines many sensitive analyses in this region.

- atlas_conf_2017_039: chargino-neutralino pair; 2-3 leptons + ₽_T.
- atlas_conf_2016_096:
 2-3 leptons + ₽_T
- atlas_conf_2017_022: squarks and gluinos, 0ℓ, 2-6 jets + ₽_T

Image: A match a ma

• atlas_conf_2016_054: 1 lepton + jets + $\not\!\!E_T$

Heavy q_H case with conserved T-parity

- $\kappa_q = 4.0$
- A_H does not decay.
- For f < 1 TeV, as before, vector boson production produces κ -independent bound.
- For f > 1 TeV, bound much weaker as q_H are decoupled and ℓ_H are much less produced.

- atlas_conf_2017_039: chargino-neutralino pair; 2-3 leptons + ₽_T
- atlas_conf_2017_022: squarks and gluinos, 0ℓ , 2-6 jets + $\not\!\!E_T$

Heavy q_H case with broken T-parity

Littlest Higgs with T-parity

• • • • • • • • • • • •

Conclusion

- Little Higgs models suggest a solution for the Hierarchy problem.
- The additional particles $(W_H, A_H, q_H, \ell_H \cdots)$ decay similarly as in Supersymmetry.
- LHC really starts to exclude the remaining "not so fine tuned" region.
- This is the first analysis which takes the effect of T-parity violation into account.
- We analyse more benchmark cases in our publication.

