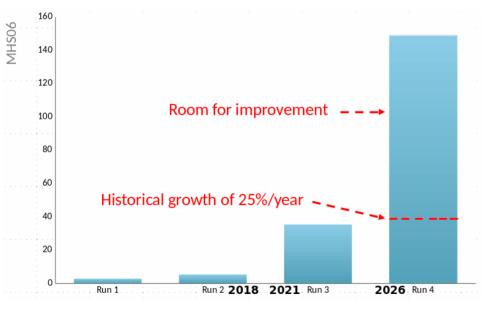


Modelling workflows in the Cloud

Gerhard Rzehorz Supervised by G. Kawamura, O. Keeble, A. Quadt II. Physikalisches Institut, Georg-August-Universität Göttingen & CERN

GEORG-AUGUST-UNIVERSITÄT Göttingen

Physics at the Terascale 2017, DESY 28.11.2017


SPONSORED BY THE

Future Resource Needs

- Dependent on LHC performance (live-time), luminosity and pile-up
- 2016 data taking was already above expectations
- Run 3: manageable with technological evolution

[[]M. Schulz, Physics at the Terascale, Nov '16, DESY, slightly simplified]

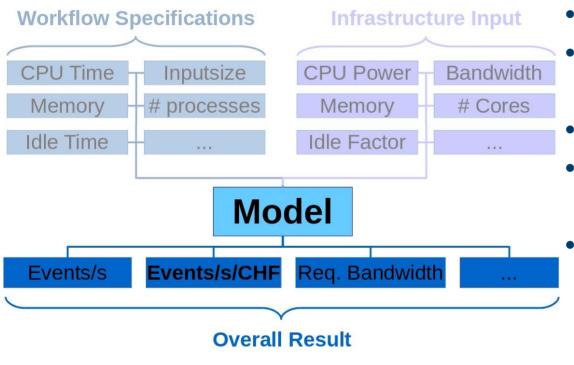
- HL-LHC: CPU requirements
 ~ 60 times higher than '16
- Factor of ~10 considering steady technological growth of 20% per year
- Infrastructure improvement: Clouds
- Use Cloud resources in WLCG

Cloud Computing

- laaS from commercial provider, "renting" resources
- Workflows: Analysis too unpredictable → Evt Gen/MC Sim, <u>Reconstruction</u> (data intensive)
- Data intensive ≠ using storage
- Experience: Costly to set up storage (for short time scales)
- Cache-only site?
- "Trade" storage for network?

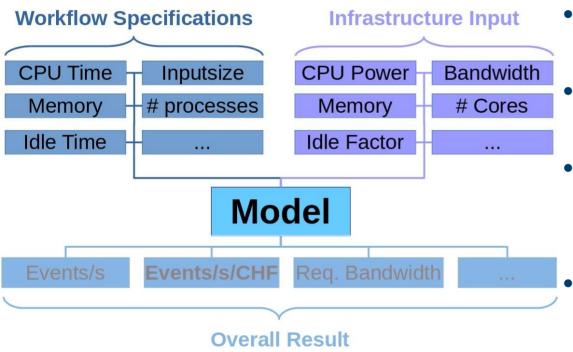
Cloud Computing

- laaS from commercial provider, "renting" resources
- Workflows: Analysis too unpredictable → Evt Gen/MC Sim, <u>Reconstruction</u> (data intensive)
- Data intensive ≠ using storage
- Experience: Costly to set up storage (for short time scales)
- Cache-only site?
- "Trade" storage for network?
- Advantages: flexibility, (cost?)
- <u>Unclear</u>: Workflow performance, benefit in adapting infrastructure to workflows, procurement (what to ask for), less personpower intensive?



The Model - Concept

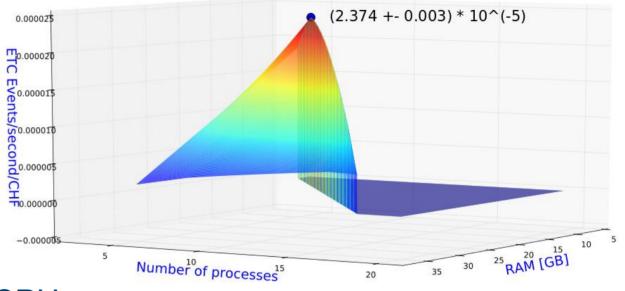
- Simple Model: linear combination
- Infrastructure inputs based on benchmarks



- <u>Generic</u>: outside physics
- <u>Correlations</u>: e.g. CPU-power
 impact required bandwidth
- <u>Evaluation</u>: find inefficiencies
- <u>Configuration</u>: SSD? Faster CPU? 4- or 8-core?
- <u>Result</u>: combined (e.g. Events s⁻¹ CHF⁻¹, "physics" per time and money) or infrastructure metric (e.g. bandwidth)
- Assessment of Clouds

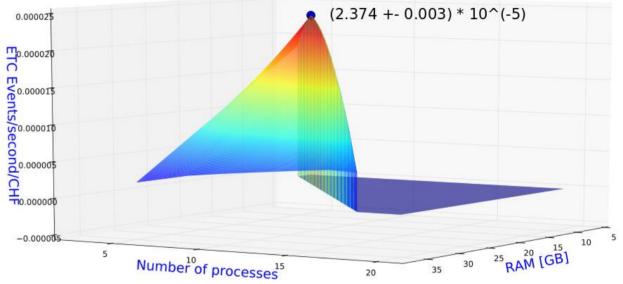
The Model - Input

- Infrastructure as well as workflow parameters needed
- Workflow specifics obtained from anywhere (Grid)



- Infrastructure inputs during Cloud procurement phase
- <u>With access</u> to Cloud: Run (ATLAS) benchmark job
- <u>Without access</u> to Cloud: Benchmark suite (tendering phase) provides input
- Classify jobs

The Model - Example

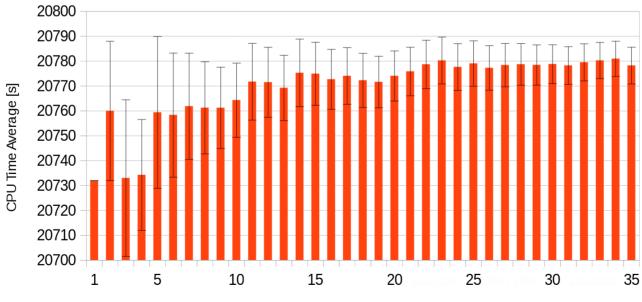

- Investigate <u>overcommitting</u>
- RAW reconstruction
- Fixed budget
- Example: few VMs (cost known)
- Vary inputs
- "Trade" RAM for more CPU

The Model - Example

- Investigate
 <u>overcommitting</u>
- RAW reconstruction
- Fixed budget
- Example: few VMs (cost known)
- Vary inputs
- "Trade" RAM for more CPU
- Result: 1000 chf in 10000 s \rightarrow (23740 ± 30) events reconstructed
- Process/RAM position of maximum best configuration
- Maximum ETC value to compare different providers
- Result applicable to Grid (even with fixed RAM)

The Workflows - Behaviour

- Validation: cover all possible workflow and infrastructure aspects:
 - Event generation, MC Sim, Reconstruction, Digitisation
 - Different CPU/Disk/Network/Memory types/speeds
- Reference + target VM: Model target, compare to measurement
- VMs different dedicated hosts (no influencing neighbours)
- Variation of the workflow


EvGen	target		Recons	struction	target
difference Wall Time %	0,49		difference	Wall Time %	-0,28
difference CPU Time %	-0,02		difference	CPU Time %	0,91
		MC Sim	target]	
	differen	ce Wall Time %	2,68		
	differen	ce CPU Time %	1,91		

- Result from 25 measurements
- Good agreement

The Workflow – Behaviour

- How big fluctuations?
- Convergence?
- How many benchmarks for "good" input?
- Note: y-Axis does not start at zero; Error = StdDev / sqrt(n)

Reconstruction CPU Time Average for 1,2 ... n Jobs

Number of Jobs

Gerhard Rzehorz

The Model - Uncertainties

- Compare Model prediction to measurement
- 5 VMs on 3 different Cloud providers (HNSciCloud prototypes)

HNSciCloud

GEORG-AUGUST-UNIVERSITÄT Göttingen

6

Helix Nebula Science Cloud Joint Pre-Commercial Procurement

Procurers: CERN, CNRS, DESY, EMBL-EBI, ESRF, IFAE, INFN, KIT, STFC, SURFSara Experts: Trust-IT & EGI.eu

The group of procurers have committed

- Procurement funds
- Manpower for testing/evaluation
- Use-cases with applications & data
- In-house IT resources

Resulting services will be made available to endusers from many research communities

Co-funded via H2020 Grant Agreement 687614

Total procurement budget >5.3M€

The Model - Uncertainties

- Compare Model prediction to measurement
- 5 VMs on 3 different Cloud providers (HNSciCloud prototypes)
- <u>Model</u>: provide error estimation for every result
- Use standard deviation of benchmark results, error propagation to final result

Model error prediction

Measurement

	Reco 1	Reco 2	Reco 3		Reco 1	Reco 2	Reco 3
	Wall diff %	Wall diff %	Wall diff %		Wall diff %	Wall diff %	Wall diff %
IBM	2,06	4,41	0,38	IBM	1,11	-3,74	0,48
TSY	2,60	0,32	1,95	TSY	-0,80	1,64	-1,53
Exoscale 1	1,22	0,60	1,57	Exoscale 1	-0,91	0,97	-0,52
Exoscale 2	0,97	0,93	10,76	Exoscale 2	-0,77	0,77	2,40
Exoscale 3	0,80	0,92		Exoscale 3	-0,42	0,78	

The Model - Uncertainties

 Similar jobs (same task, SW stack, merging)

	Reco 1	Reco 2	
	Wall diff %	Wall diff %	
IBM	1,11	-3,74	
TSY	-0,80	1,64	
Exoscale 1	-0,91	0,97	
Exoscale 2	-0,77	0,77	
Exoscale 3	-0,42	0,78	

Different jobs (SW stack, merging)

VS

Mix factors	1 with 2		
	Wall diff [%]		
IBM	-23,22		
TSY	6,60		
Exoscale 1	-13,59		
Exoscale 2	-10,88		
Exoscale 3	-8,13		

- Not comparing "apples with oranges": Categorise jobs
- Careful also with: Number of events (overheads), Number of Cores

Conclusion

- Future resource deficit \rightarrow <u>Cloud</u> possible relief
- <u>Infrastructure adaptations</u> to workflows (e.g. bandwidth vs storage, overcommitting plus RAM, reco/evgen VMs/sites)
- Model <u>compares sites</u>, finds bottlenecks and optimal configurations
- Model indicates <u>correlations</u> and impact between parameters, e.g. CPU speed on required bandwidth
- Model quantifies <u>Cloud benefits</u>
- Prerequisite: Carefully classify workflows

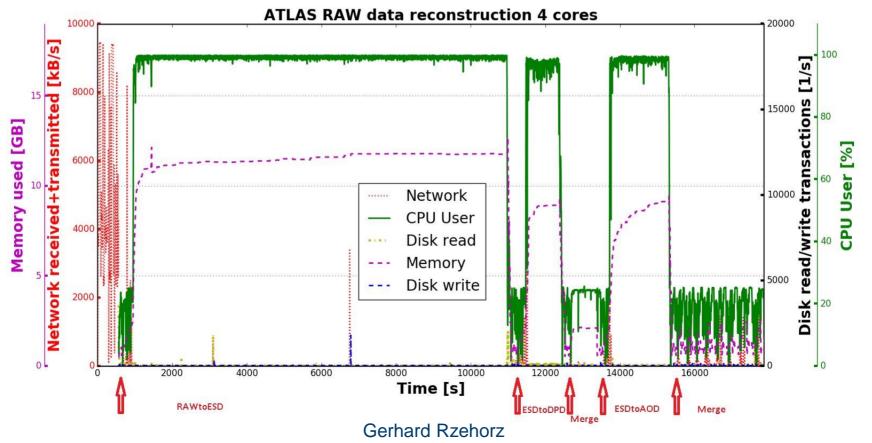
Work sponsored by the Wolfgang Gentner Programme of the Federal Ministry of Education and Research.

Backup

Gerhard Rzehorz

- The Workflow and Infrastructure Model solves the previous and following questions:
 - Evaluation of <u>workflow behaviour</u> on infrastructure: inefficiencies? bottlenecks?
 - Comparison of different configurations: SSDs? faster CPUs? 4- vs 8-core? only Simul?
 - Discovery of adaptations and optimisations: overcommitting with additional RAM?
 - Assessment of workflow requirements: bandwidth? storage?
 - (Cloud) site comparison

The Model



- Plethora of input parameters → graspable output for different scenarios
- Vary metrics against each other
- Find min/max of desired output value
- Highest level: site (Cloud) comparison
- Simple: less accurate, but not all Cloud aspects known

The Workflow

- Processing in controlled environment
- ATLAS RAW data reco: combination of transformations
- Split transformations too complex

