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Interpolation

Unknown function f : f (xi ) = yi , i = 1, 2, ..., n

Construct from (x1, y1), ..., (xn, yn)
→ Interpolated function g : g(xi ) = yi

Minimal disagreement between f & g

HOW?

Divide the set into:

{(x1, y1), ..., (xm, ym)}︸ ︷︷ ︸
interpolation set
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validation set

Interpolation set → construct g
validation set → measure disagreement between f & g
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Simplified Example for Interpolation

Source: Pattern Recognition and Machine Learning [Bishop]
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Cost function

Quadratic cost function: C (w , b) = 1
2n

∑
x ||y(x)− a||2

C = C (w , b) + λ
2n |w |
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If y(x) ≈ a→ C (w , b) ≈ 0 (for all training inputs)

Aim of training algorithm is minimising C (w , b)
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Overfitting

Total error on the validation data does not decrease (even increase)

Source: Pattern Recognition and Machine Learning [Bishop]
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Regularization

Source: Pattern Recognition and Machine Learning [Bishop]
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Gradient Descent

Source: Neural Networks and Deep Learning [Nielsen]
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2 Neural Network approaches

1 Direct: Train NN using parameters of pMSSM-11 as an input
→ global pMSSM-11 fits ⇒ fast
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Flow Chart of Simulation Chain

pMSSM-11
parameters

SPheno

Madgraph

Pythia

CheckMATE

χ2
CM

NLL-Fast
and Prospino

Spectrum calculation

MC-Event generation

Showering and
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of LHC analyses
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Distribution of χ2 (Old result)

Source: arXiv 1703.01309
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Distribution of χ2 (New result)

Source: Ferdinand Eiteneuer
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Results

13 TeV (Old)

χ2 range 0− 100 0− 53.5 53.5− 56 56− 70 70− 95 95− 100

1.45 1.78 0.92 2.35 3.95 0.49

13 TeV (New)

χ2 range 0− 100 0− 53.5 53.5− 56 56− 70 70− 95 95− 100

1.49 1.97 0.57 1.46 3.01 0.66

Table: Mean errors of NN for LHC χ2
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Evolution of the mean error (Old)

Source: Jan Schütte-Engel
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Evolution of the mean error (New)

Source: Ferdinand Eiteneuer
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Old Results from CheckMATE and SCYNet (8 TeV)

Project the 11-d pMSSM parameter space onto the masses of g̃
and χ̃0

1

Figure: Minimum pMSSM-11 χ2 in the g̃ -χ̃0
1 mass plane

Source: arXiv 1703.01309
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Comparison CM - SN

Figure: Difference between the CheckMATE and SCYNet χ2

Source: arXiv 1703.01309
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Summary

Test SUSY against LHC data with a proper tool
→ SCYNet (SUSY Calculating Yield Net)

11 parameters as input, χ2 as output

Use Neural Network for reducing time.

13 TeV analyses (14 ATLAS + 1 CMS) for strong and
electroweak processes

Still need more statistics in RTLP regions to improve χ2



SUSY Neural Network Event Generation Results

Summary

Test SUSY against LHC data with a proper tool
→ SCYNet (SUSY Calculating Yield Net)

11 parameters as input, χ2 as output

Use Neural Network for reducing time.

13 TeV analyses (14 ATLAS + 1 CMS) for strong and
electroweak processes

Still need more statistics in RTLP regions to improve χ2



SUSY Neural Network Event Generation Results

Summary

Test SUSY against LHC data with a proper tool
→ SCYNet (SUSY Calculating Yield Net)

11 parameters as input, χ2 as output

Use Neural Network for reducing time.

13 TeV analyses (14 ATLAS + 1 CMS) for strong and
electroweak processes

Still need more statistics in RTLP regions to improve χ2



SUSY Neural Network Event Generation Results

Summary

Test SUSY against LHC data with a proper tool
→ SCYNet (SUSY Calculating Yield Net)

11 parameters as input, χ2 as output

Use Neural Network for reducing time.

13 TeV analyses (14 ATLAS + 1 CMS) for strong and
electroweak processes

Still need more statistics in RTLP regions to improve χ2



SUSY Neural Network Event Generation Results

Summary

Test SUSY against LHC data with a proper tool
→ SCYNet (SUSY Calculating Yield Net)

11 parameters as input, χ2 as output

Use Neural Network for reducing time.

13 TeV analyses (14 ATLAS + 1 CMS) for strong and
electroweak processes

Still need more statistics in RTLP regions to improve χ2



SUSY Neural Network Event Generation Results

Summary

Test SUSY against LHC data with a proper tool
→ SCYNet (SUSY Calculating Yield Net)

11 parameters as input, χ2 as output

Use Neural Network for reducing time.

13 TeV analyses (14 ATLAS + 1 CMS) for strong and
electroweak processes

Still need more statistics in RTLP regions to improve χ2



SUSY Neural Network Event Generation Results

Thank you for your attention
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Preselection Criteria for LHC Event Generation

Use pMSSM-11 as model of interest

No tachyons in the spectrum

χ0
1 is LSP

mh0 , mH0 > 110GeV

mχ±
1
> 103.5GeV

5×
√
σ2theory + σ2exp. > |theory value − exp. value|

for the EW precision observables
mW , ∆ms , BR(Bs → µµ), BR(b → sγ), BR(Bu → τν)

Restrict the pMSSM-11 parameter space to phenomenologically
viable regions.
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CheckMATE (Check Models At Terascale Energies)

Test SUSY model against LHC data
Check if the model is excluded or not at 95% C.L.

Input
Cross sections and their errors for all processes
Output
N̂i ,j ,k : number of signal events from process i in SR k of
analysis j
Ni ,j ,k : normalised number of signal events from process i in
SR k of analysis j
Njk =

∑n
i=1Ni ,j ,k : normalized number of events in SR k of

analysis j for all processes + statistical error + systematical
error
Ojk number of observed events in SR k of analysis j
(experiment)
Logarithm of the profile likelihood ratio (PLR) for each SR k
of each analysis j
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Bron-Kerbosch Algorithm for Selecting disjoint SRs

A B

D

C

E F

H G

Orthogonal group 1: {A,B,C}, {D}

Orthogonal group 2: {E ,G}, {H,F}
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More on Neural Network

Sigmoid function:

a(w .x + b) = 1
1+exp−(w.x+b)

Output depends on all weights and biases

Construction of g : training phase
Interpolation set: training set

Evaluation of the total error on validation set after training
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Adam Optimizer (Adaptive Moment estimation)

Minimization algorithm which relies only on first order
information

4 hyperparameters (chosen at the beginning but can be
changed after each training epoch)
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pMSSM-11 parameters and scan ranges

parameter scan range

M1 [-4000,4000] GeV

M2 [100,4000] GeV

M3 [-4000,-400]∪[400,4000] GeV

mq̃12 [300,5000] GeV

mq̃3 [100,5000] GeV

ml̃12
[100,3000] GeV

ml̃3
[100,4000] GeV

mA0 [0,4000] GeV

A0 [-5000,5000] GeV

µ [-5000,-100]∪[100,5000] GeV GeV

tanβ [1,60]
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Indirect approach

Figure: Performance of the neural network trained on the reparametrized
pMSSM-11 points on the cMSSM (a) and AMSB (b). In each bin the
mean difference was calculated for all validation points.

Source: arXiv 1703.01309
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Information of event generation

scanned points:

√
s scanned points

13 TeV (old) 140000

13 TeV (new) 170000

Disjoint signal regions:

√
s disjoint SRs

13 TeV (old) 65

13 TeV (new) 64
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