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Exploring more generic SUSY models (pMSSM-11)
Global scan for SUSY

Why pMSSM?

1 (g—2),
2. DM relic density

3. LHC limits from direct searches
@ Accurate and fast statistical evaluation of LHC search limits

Calculate y? from the event counts in the signal regions with
CheckMATE

x? to train Neural Network
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phenomenological MSSM (pMSSM)

M, Gaugino masses
@ 105 parameters My

@ No R-parity violation

. . Squark and slepton masses
no CP violation m

no FCNC Ly

A = :
! Trilinear coupling

@ 105 — 11 parameters

M0 Higgs sector

tan 3
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Neural Network

Interpolation

e Unknown function f: f(x;) = y;,i =1,2

g Ly enny

e Construct from (x1,y1), ..., (Xn, ¥n)

— Interpolated function g: g(x;) = yi
@ Minimal disagreement between f & g

HOW?
@ Divide the set into:
{(X17y1)7 A (Xm,)/m)} {(Xm+1,}/m+1), A (Xm}/n)}
interporartion set validation set

@ Interpolation set — construct g

validation set — measure disagreement between f & g
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Simplified Example for Interpolation

0 ., 1 0

Source: Pattern Recognition and Machine Learning [Bishop]
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Neural Network

Il
Io output
Ty

@ Inputs: x;,i=1,2,....n
o Weights: w;,i=1,2,...,n
e Bais: b

@ Activation function:

a(>°", wix; + b) = a(w.x + b) = output
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Neural Network

Cost function

@ How can we judge if the parameters are chosen well?

Cost function

(]

Quadratic cost function: C(w, b) = 2—1,1 S ly(x) — alf?

o C=C(w,b)+ 3 |wf?

If y(x) =~ a— C(w, b) = 0 (for all training inputs)

Aim of training algorithm is minimising C(w, b) ]




Neural Network

Overfitting

Total error on the validation data does not decrease (even increase)

0 o1 0 . 1

Source: Pattern Recognition and Machine Learning [Bishop]
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Regularization
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Source: Pattern Recognition and Machine Learning [Bishop]
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Gradient Descent

Source: Neural Networks and Deep Learning [Nielsen]
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2 Neural Network approaches

@ Direct: Train NN using parameters of pMSSM-11 as an input
— global pMSSM-11 fits = fast

pMSSM-11 Neural
Parameters Network

2
Xsn

@ Indirect: Train NN using model-independent signature-related
objects = slower than direct approach

Masses

MSSM-11 L
P P Cross sections }—” Reparametrlzatlon }—’ Neural X%N

parameters Network

Branching ratios



Event Generation

Flow Chart of Simulation Chain
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Event Generation
Selecting non-Overlapping Signal Regions

Calculation of total y?

o All selected SRs: XJ2 = ngk

@ Overall: Xtot = Zj XJ?
A B C D
A B C D
A/0 1 0 O
. : Bl1 0 1 O
Orthogonality Matrix = clo 1 0 o
D\0O 0 0 O
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Profile Likelihood Ratio

e e 2
g(Nobs‘/J/a Vs, VSM) = )‘Nobs

Nobs! vV 2 vV 27

s M gy
Avs,vsm, 1) = pNs e Ns > 4 Ngpg e Nsm

PLR = % _ maXVs,VSMGRg(:UJ =1,vs,Vsm)

G max,u,,us,VSMER j(,ud, s, VSM)

q, = —2log PRL

q, is asymptotically x? distributed in the limit of large Nops
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Results

Distribution of x? (Old result)
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Results

Distribution of x? (New result)
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Results

13 TeV (Old)

2 range 0_100]0_535 535_56 56_70 70_95 95_ 100
1.45 1.78 0.92 2.35 3.95 0.49

13 TeV (New)

X2 range 0—-100 | 0—-535 535-56 56—-70 70—-95 95-100
1.49 1.97 0.57 1.46 3.01 0.66

Table: Mean errors of NN for LHC 2



Results

Evolution of the mean error (Old)
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Results

Evolution of the mean error (New)

validation and training loss

I train error 0.0-100.0
6 : : : I test error 0.0-100.0

)

2
— Xoum

[
T
i

mean absolute error (x4 y

0 200 100 600 800 1000 1200 1400 1600
epochs

Source: Ferdinand Eiteneuer



Results

Old Results from CheckMATE and SCYNet (8 TeV)

Project the 11-d pMSSM parameter space onto the masses of g
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Figure: Minimum pMSSM-11 x?2 in the g-¥{ mass plane

Source: arXiv 1703.01309



Results

Comparison CM - SN
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Figure: Difference between the CheckMATE and SCYNet y?

Source: arXiv 1703.01309
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Results

Summary

Test SUSY against LHC data with a proper tool
— SCYNet (SUSY Calculating Yield Net)

11 parameters as input, 2 as output

Use Neural Network for reducing time.

13 TeV analyses (14 ATLAS + 1 CMS) for strong and
electroweak processes

Still need more statistics in RTLP regions to improve x2



Thank you for your attention
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Results
Preselection Criteria for LHC Event Generation

Use pMSSM-11 as model of interest

@ No tachyons in the spectrum

x? is LSP

@ myo, myo > 110 GeV

m_+ > 103.5 GeV
X1

® 5x + 02, > |theory value — exp. value]

theory
for the EW preC|S|on observables

my, Amg, BR(Bs — up), BR(b— sy), BR(B, — Tv)

Restrict the pMSSM-11 parameter space to phenomenologically
viable regions.



Results

CheckMATE ( odels t erascale nergies)

@ Test SUSY model against LHC data
@ Check if the model is excluded or not at 95% C.L.

@ Input
Cross sections and their errors for all processes

o Output
I\A/,-,Lk: number of signal events from process i in SR k of
analysis |
N; j k: normalised number of signal events from process i in
SR k of analysis j
Njx = >-7_1 N j «: normalized number of events in SR k of
analysis j for all processes + statistical error 4+ systematical
error
Ojx number of observed events in SR k of analysis j
(experiment)
Logarithm of the profile likelihood ratio (PLR) for each SR k
of each analysis j



Bron-Kerbosch Algorithm for Selecting disjoint SRs

e Orthogonal group 1: {A, B, C}, {D}

e Orthogonal group 2: {E, G}, {H, F}



Results

More on Neural Network

Sigmoid function:

a(W.X + b) = m

Output depends on all weights and biases

Construction of g: training phase
Interpolation set: training set

Evaluation of the total error on validation set after training



Results

Adam Optimizer (Adaptive Moment estimation)

@ Minimization algorithm which relies only on first order
information

@ 4 hyperparameters (chosen at the beginning but can be
changed after each training epoch)



pMSSM-11 parameters and scan ranges

parameter

SCan range

M, [-4000,4000] GeV

M [100,4000] GeV

Ms [-4000,-400]U[400,4000] GeV
My, [300,5000] GeV

ma, [100,5000] GeV

m, [100,3000] GeV

my, [100,4000] GeV

m a0 [0,4000] GeV

AP [-5000,5000] GeV

u [-5000,-100]U[100,5000] GeV GeV
tan g [1,60]




Results

Indirect approach
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Figure: Performance of the neural network trained on the reparametrized
pMSSM-11 points on the cMSSM (a) and AMSB (b). In each bin the
mean difference was calculated for all validation points.

Source: arXiv 1703.01309



Results
Information of event generation

scanned points:

NG scanned points
13 TeV (old) 140000
13 TeV (new) 170000

Disjoint signal regions:

NG disjoint SRs
13 TeV (old) 65
13 TeV (new) 64
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