SCYNet: a tool for fast global fits to collider searches

Abtin Narimani

University of Bonn

Terascale Meeting, Nov 2017

28.11.2017

- Exploring more generic SUSY models (pMSSM-11) Global scan for SUSY
- Why pMSSM?
 - 1. $(g 2)_{\mu}$
 - 2. DM relic density
 - 3. LHC limits from direct searches
- Accurate and fast statistical evaluation of LHC search limits
- Calculate χ^2 from the event counts in the signal regions with CheckMATE
- χ^2 to train Neural Network

• Exploring more generic SUSY models (pMSSM-11)

- Why pMSSM?
 - 1. $(g 2)_{\mu}$
 - 2. DM relic density
 - 3. LHC limits from direct searches
- Accurate and fast statistical evaluation of LHC search limits
- Calculate χ^2 from the event counts in the signal regions with CheckMATE
- χ^2 to train Neural Network

• Exploring more generic SUSY models (pMSSM-11)

- Why pMSSM?
 - 1. $(g 2)_{\mu}$
 - 2. DM relic density
 - 3. LHC limits from direct searches
- Accurate and fast statistical evaluation of LHC search limits
- Calculate χ^2 from the event counts in the signal regions with CheckMATE
- χ^2 to train Neural Network

• Exploring more generic SUSY models (pMSSM-11)

- Why pMSSM?
 - 1. $(g 2)_{\mu}$
 - 2. DM relic density
 - 3. LHC limits from direct searches
- Accurate and fast statistical evaluation of LHC search limits
- Calculate χ^2 from the event counts in the signal regions with CheckMATE
- χ^2 to train Neural Network

• Exploring more generic SUSY models (pMSSM-11)

- Why pMSSM?
 - 1. $(g 2)_{\mu}$
 - 2. DM relic density
 - 3. LHC limits from direct searches
- Accurate and fast statistical evaluation of LHC search limits
- Calculate χ^2 from the event counts in the signal regions with CheckMATE
- χ^2 to train Neural Network

• Exploring more generic SUSY models (pMSSM-11)

- Why pMSSM?
 - 1. $(g 2)_{\mu}$
 - 2. DM relic density
 - 3. LHC limits from direct searches
- Accurate and fast statistical evaluation of LHC search limits
- Calculate χ^2 from the event counts in the signal regions with CheckMATE
- χ^2 to train Neural Network

phenomenological MSSM (pMSSM)

- 105 parameters
- No R-parity violation
 no CP violation
 no FCNC
- $105 \rightarrow 11$ parameters

Gaugino masses

Squark and slepton masses

Trilinear coupling

Higgs sector

phenomenological MSSM (pMSSM)

• 105 parameters

- No R-parity violation
 no CP violation
 no FCNC
- $105 \rightarrow 11$ parameters

Gaugino masses

Squark and slepton masses

Trilinear coupling

Higgs sector

phenomenological MSSM (pMSSM)

 M_1

phenomenological MSSM (pMSSM)

Squark and slepton masses

Trilinear coupling

Higgs sector

- Unknown function $f: f(x_i) = y_i, i = 1, 2, ..., n$
- Construct from (x₁, y₁), ..., (x_n, y_n)
 → Interpolated function g: g(x_i) = y_i
- Minimal disagreement between f & g

HOW?

Divide the set into::

> Interpolation set → construct g >validation set → measure disagreement between C&g

ς	11	ς	V
0	S	-	

- Unknown function $f: f(x_i) = y_i, i = 1, 2, ..., n$
- Construct from $(x_1, y_1), ..., (x_n, y_n)$ \rightarrow Interpolated function $g: g(x_i) = y_i$
- Minimal disagreement between f & g

HOW?

Divide the set into:

 $\frac{(n, \gamma, n, N)}{(n, \gamma, n, N)} \underbrace{\{(n, \gamma, n, N), (n, \gamma, n, N), \dots, (N, r, N), (N, r, N),$

 $f: \mathcal{A} \to \mathcal{A}$ interpolation set \to construct group validation set \to measure disagreement between f & group for a group of the set of the group of the set of t

ς	11	ς	V
0	S	-	

- Unknown function $f: f(x_i) = y_i, i = 1, 2, ..., n$
- Construct from (x₁, y₁), ..., (x_n, y_n)
 → Interpolated function g: g(x_i) = y_i
- Minimal disagreement between f & g HOW?
- Divide the set into:

Interpolation set \rightarrow construct g validation set \rightarrow measure disagreement between ℓ & g

- Unknown function $f: f(x_i) = y_i, i = 1, 2, ..., n$
- Construct from (x₁, y₁), ..., (x_n, y_n)
 → Interpolated function g: g(x_i) = y_i
- Minimal disagreement between f & g

 $f: \mathcal{A} \to \mathcal{A}$. Interpolation set \to construct growth the set $f: \mathcal{A}$ growth and $f: \mathcal{A}$ growth the set $f: \mathcal{A}$ growth and $f: \mathcal{A}$ growth the set $f: \mathcal{A}$ growth and $f: \mathcal{A}$ growth a

- Unknown function $f: f(x_i) = y_i, i = 1, 2, ..., n$
- Construct from (x₁, y₁), ..., (x_n, y_n)
 → Interpolated function g: g(x_i) = y_i
- Minimal disagreement between f & g HOW?
- Divide the set into:

Interpolation set \rightarrow construct g validation set \rightarrow measure disagreement between ℓ & g

- Unknown function $f: f(x_i) = y_i, i = 1, 2, ..., n$
- Construct from (x₁, y₁), ..., (x_n, y_n)
 → Interpolated function g: g(x_i) = y_i
- Minimal disagreement between *f* & *g* HOW?
- Divide the set into:

• Interpolation set \rightarrow construct gvalidation set \rightarrow measure disagreement between f & g

- Unknown function $f: f(x_i) = y_i, i = 1, 2, ..., n$
- Construct from (x₁, y₁), ..., (x_n, y_n)
 → Interpolated function g: g(x_i) = y_i
- Minimal disagreement between f & g

HOW?

• Divide the set into:

 $\{(x_1, y_1), ..., (x_m, y_m)\} \{(x_{m+1}, y_{m+1}), ..., (x_n, y_n)\}$ interpolation set validation set

 Interpolation set → construct g validation set → measure disagreement between f & g

- Unknown function $f: f(x_i) = y_i, i = 1, 2, ..., n$
- Construct from (x₁, y₁), ..., (x_n, y_n)
 → Interpolated function g: g(x_i) = y_i
- Minimal disagreement between f & g

HOW?

• Divide the set into:

$$\underbrace{\{(x_1, y_1), \dots, (x_m, y_m)\}}_{\text{interpolation set}} \underbrace{\{(x_{m+1}, y_{m+1}), \dots, (x_n, y_n)\}}_{\text{validation set}}$$

 Interpolation set → construct g validation set → measure disagreement between f & g

Simplified Example for Interpolation

- Inputs: $x_i, i = 1, 2, ..., n$
- Weights: $w_i, i = 1, 2, ..., n$
- Bais: b
- Activation function:

$a(\sum_{i=1}^{n}w_{i}x_{i}+b)=a(w_{i}x_{i}+b)=$ output

- Inputs: $x_i, i = 1, 2, ..., n$
- Weights: $w_i, i = 1, 2, ..., n$
- Bais: b
- Activation function:

$a(\sum_{i=1}^{n}w_{i}x_{i}+b)=a(w_{i}x_{i}+b)= ext{output}$

- Inputs: $x_i, i = 1, 2, ..., n$
- Weights: $w_i, i = 1, 2, ..., n$
- Bais: b
- Activation function:

$a(\sum_{i=1}^{n}w_ix_i+b)=a(w_ix_i+b)=$ output

- Inputs: $x_i, i = 1, 2, ..., n$
- Weights: $w_i, i = 1, 2, ..., n$
- Bais: b
- Activation function:

$a(\sum_{i=1}^n w_i x_i + b) = a(w.x + b) =$ output

- Inputs: $x_i, i = 1, 2, ..., n$
- Weights: $w_i, i = 1, 2, ..., n$
- Bais: b
- Activation function:

 $a(\sum_{i=1}^{n} w_i x_i + b) = a(w.x + b) = \text{output}$

- Inputs: $x_i, i = 1, 2, ..., n$
- Weights: $w_i, i = 1, 2, ..., n$
- Bais: b
- Activation function:

$$a(\sum_{i=1}^{n} w_i x_i + b) = a(w.x + b) =$$
output

• How can we judge if the parameters are chosen well? Cost function

Quadratic cost function: $C(w, b) = \frac{1}{2r} \sum_{x} |y(x) - x||^2$

• $C = C(w, b) + \frac{1}{2n}|w|^2$

 $f_{\mathcal{Y}}(\mathbf{x}) \approx a \rightarrow C(w, b) \approx 0 \text{ (for all training inputs)}$

• How can we judge if the parameters are chosen well?

• Quadratic cost function: $C(w, b) = \frac{1}{2n} \sum_{x} ||y(x) - a||^2$

$\circ \ C = C(w, b) + \frac{\lambda}{2a} |w|^2$

 $f_{\mathcal{Y}}(\mathbf{x}) \approx a \rightarrow C(w, b) \approx 0 \text{ (for all training inputs)}$

• How can we judge if the parameters are chosen well? Cost function

• Quadratic cost function: $C(w, b) = \frac{1}{2n} \sum_{x} ||y(x) - a||^2$

•
$$C = C(w, b) + \frac{\lambda}{2n}|w|^2$$

• If $y(x) \approx a \rightarrow C(w, b) \approx 0$ (for all training inputs)

- How can we judge if the parameters are chosen well? Cost function
- Quadratic cost function: $C(w, b) = \frac{1}{2n} \sum_{x} ||y(x) a||^2$
- $C = C(w, b) + \frac{\lambda}{2n}|w|^2$
- If $y(x) \approx a \rightarrow C(w, b) \approx 0$ (for all training inputs)

- How can we judge if the parameters are chosen well? Cost function
- Quadratic cost function: $C(w, b) = \frac{1}{2n} \sum_{x} ||y(x) a||^2$

•
$$C = C(w, b) + \frac{\lambda}{2n} |w|^2$$

• If $y(x) \approx a \rightarrow C(w, b) \approx 0$ (for all training inputs)

- How can we judge if the parameters are chosen well? Cost function
- Quadratic cost function: $C(w, b) = \frac{1}{2n} \sum_{x} ||y(x) a||^2$

•
$$C = C(w, b) + \frac{\lambda}{2n} |w|^2$$

• If $y(x) \approx a \rightarrow C(w, b) \approx 0$ (for all training inputs)

- How can we judge if the parameters are chosen well? Cost function
- Quadratic cost function: $C(w, b) = \frac{1}{2n} \sum_{x} ||y(x) a||^2$

•
$$C = C(w, b) + \frac{\lambda}{2n} |w|^2$$

• If $y(x) \approx a \rightarrow C(w, b) \approx 0$ (for all training inputs)

		0	• •
5		5	v
9	v	5	

Overfitting

Total error on the validation data does not decrease (even increase)

Regularization

Gradient Descent

Source: Neural Networks and Deep Learning [Nielsen]

Direct: Train NN using parameters of pMSSM-11 as an input → global pMSSM-11 fits ⇒ fast

betaler-enutangia trobneqabai-laboar gaiau NN niarT ::trainful @
betaler-enutangia trobneqabai-laboar gaiau NN niarT :resola @

• Direct: Train NN using parameters of pMSSM-11 as an input \rightarrow global pMSSM-11 fits \Rightarrow fast

Indirect: Train NN using model-independent signature-related objects ⇒ slower than direct approach

• Direct: Train NN using parameters of pMSSM-11 as an input \rightarrow global pMSSM-11 fits \Rightarrow fast

Indirect: Train NN using model-independent signature-related objects ⇒ slower than direct approach

• Direct: Train NN using parameters of pMSSM-11 as an input \rightarrow global pMSSM-11 fits \Rightarrow fast

Indirect: Train NN using model-independent signature-related objects ⇒ slower than direct approach

• Direct: Train NN using parameters of pMSSM-11 as an input \rightarrow global pMSSM-11 fits \Rightarrow fast

Indirect: Train NN using model-independent signature-related objects ⇒ slower than direct approach

Flow Chart of Simulation Chain

- Calculation of total χ^2
 - All selected SRs:
 - Overall:

- Calculation of total χ^2
 - All selected SRs:
 - Overall:

Calculation of total χ^2

• All selected SRs:

$$\chi_j^2 = \sum_{\mathbf{k}} \chi_{jk}^2$$
$$\chi_{jk}^2 = \sum_{\mathbf{k}} \chi_{jk}^2$$

• Overall:

Calculation of total χ^2

• Overall:

All selected SRs:

$$\chi_j^2 = \sum_k \chi_{jk}^2$$
$$\chi_{tot}^2 = \sum_j \chi_j^2$$

Calculation of total χ^2

- All selected SRs: $\chi_i^2 = \sum_k \chi_{ik}^2$
- Overall: $\chi^2_{tot} = \sum_j \chi^2_j$

Calculation of total χ^2

- All selected SRs: $\chi_i^2 = \sum_k \chi_{ik}^2$
- Overall: $\chi^2_{tot} = \sum_j \chi^2_j$

$$\mathscr{L}(N_{obs}|\mu,\nu_{S},\nu_{SM}) = \frac{e^{-\lambda}}{N_{obs}!} \lambda^{N_{obs}} \frac{e^{-\frac{\nu_{S}^{2}}{2}}}{\sqrt{2\pi}} \frac{e^{-\frac{\nu_{SM}^{2}}{2}}}{\sqrt{2\pi}}$$

$$\lambda(\nu_{S},\nu_{SM},\mu) = \mu N_{S} e^{\frac{\sigma_{N_{S}}}{N_{S}}\nu_{S}} + N_{SM} e^{\frac{\sigma_{N_{SM}}}{N_{SM}}\nu_{SM}}$$

$$PLR = \frac{\mathscr{L}_C}{\mathscr{L}_G} = \frac{\max_{\nu_S, \nu_{SM} \in R} \mathscr{L}(\mu = 1, \nu_S, \nu_{SM})}{\max_{\mu, \nu_S, \nu_{SM} \in R} \mathscr{L}(\mu, \nu_S, \nu_{SM})}$$

$$q_{\mu} = -2 \log PRL$$

 q_{μ} is asymptotically χ^2 distributed in the limit of large N_{obs}

$$\mathscr{L}(N_{obs}|\mu,\nu_{S},\nu_{SM}) = \frac{e^{-\lambda}}{N_{obs}!} \lambda^{N_{obs}} \frac{e^{-\frac{\nu_{S}^{2}}{2}}}{\sqrt{2\pi}} \frac{e^{-\frac{\nu_{SM}^{2}}{2}}}{\sqrt{2\pi}}$$

$$\lambda(\nu_S,\nu_{SM},\mu) = \mu N_S e^{\frac{\sigma_{N_S}}{N_S}\nu_S} + N_{SM} e^{\frac{\sigma_{N_{SM}}}{N_{SM}}\nu_{SM}}$$

$$PLR = \frac{\mathscr{L}_{C}}{\mathscr{L}_{G}} = \frac{\max_{\nu_{S}, \nu_{SM} \in R} \mathscr{L}(\mu = 1, \nu_{S}, \nu_{SM})}{\max_{\mu, \nu_{S}, \nu_{SM} \in R} \mathscr{L}(\mu, \nu_{S}, \nu_{SM})}$$

$$q_{\mu} = -2 \log PRL$$

 q_{μ} is asymptotically χ^2 distributed in the limit of large N_{obs}

$$\mathscr{L}(N_{obs}|\mu,\nu_{S},\nu_{SM}) = \frac{e^{-\lambda}}{N_{obs}!} \lambda^{N_{obs}} \frac{e^{-\frac{\nu_{S}^{2}}{2}}}{\sqrt{2\pi}} \frac{e^{-\frac{\nu_{SM}^{2}}{2}}}{\sqrt{2\pi}}$$

$$\lambda(\nu_{S},\nu_{SM},\mu) = \mu N_{S} e^{\frac{\sigma_{N_{S}}}{N_{S}}\nu_{S}} + N_{SM} e^{\frac{\sigma_{N_{SM}}}{N_{SM}}\nu_{SM}}$$

$$PLR = \frac{\mathscr{L}_C}{\mathscr{L}_G} = \frac{\max_{\nu_S, \nu_{SM} \in R} \mathscr{L}(\mu = 1, \nu_S, \nu_{SM})}{\max_{\mu, \nu_S, \nu_{SM} \in R} \mathscr{L}(\mu, \nu_S, \nu_{SM})}$$

$$q_{\mu} = -2 \log PRL$$

 q_μ is asymptotically χ^2 distributed in the limit of large N_{obs}

$$\mathscr{L}(\mathsf{N}_{obs}|\mu,\nu_{\mathsf{S}},\nu_{\mathsf{SM}}) = \frac{e^{-\lambda}}{\mathsf{N}_{obs}!} \,\lambda^{\mathsf{N}_{obs}} \,\frac{e^{-\frac{\nu_{\mathsf{S}}^2}{2}}}{\sqrt{2\pi}} \,\frac{e^{-\frac{\nu_{\mathsf{SM}}^2}{2}}}{\sqrt{2\pi}}$$

$$\lambda(\nu_{S},\nu_{SM},\mu) = \mu N_{S} e^{\frac{\sigma_{N_{S}}}{N_{S}}\nu_{S}} + N_{SM} e^{\frac{\sigma_{N_{SM}}}{N_{SM}}\nu_{SM}}$$

$$PLR = \frac{\mathscr{L}_{C}}{\mathscr{L}_{G}} = \frac{\max_{\nu_{S}, \nu_{SM} \in R} \mathscr{L}(\mu = 1, \nu_{S}, \nu_{SM})}{\max_{\mu, \nu_{S}, \nu_{SM} \in R} \mathscr{L}(\mu, \nu_{S}, \nu_{SM})}$$

 $q_{\mu} = -2 \log PRL$

 q_{μ} is asymptotically χ^2 distributed in the limit of large N_{obs}

$$\mathscr{L}(N_{obs}|\mu,\nu_{S},\nu_{SM}) = \frac{e^{-\lambda}}{N_{obs}!} \lambda^{N_{obs}} \frac{e^{-\frac{\nu_{S}^{2}}{2}}}{\sqrt{2\pi}} \frac{e^{-\frac{\nu_{SM}^{2}}{2}}}{\sqrt{2\pi}}$$

$$\lambda(\nu_{S},\nu_{SM},\mu) = \mu N_{S} e^{\frac{\sigma_{N_{S}}}{N_{S}}\nu_{S}} + N_{SM} e^{\frac{\sigma_{N_{SM}}}{N_{SM}}\nu_{SM}}$$

$$PLR = \frac{\mathscr{L}_{C}}{\mathscr{L}_{G}} = \frac{\max_{\nu_{S}, \nu_{SM} \in R} \mathscr{L}(\mu = 1, \nu_{S}, \nu_{SM})}{\max_{\mu, \nu_{S}, \nu_{SM} \in R} \mathscr{L}(\mu, \nu_{S}, \nu_{SM})}$$

$$q_{\mu} = -2 \log PRL$$

 q_{μ} is asymptotically χ^2 distributed in the limit of large N_{obs}

Distribution of χ^2 (Old result)

Distribution of χ^2 (New result)

Source: Ferdinand Eiteneuer

Results

13 TeV (Old)						
χ^2 range	0 - 100	0 - 53.5	53.5 - 56	56 - 70	70 - 95	95 - 100
	1.45	1.78	0.92	2.35	3.95	0.49
13 TeV (New)						
χ^2 range	0 - 100	0 - 53.5	53.5 - 56	56 - 70	70 - 95	95 - 100
	1.49	1.97	0.57	1.46	3.01	0.66

Table: Mean errors of NN for LHC χ^2

Evolution of the mean error (Old)

Evolution of the mean error (New)

Source: Ferdinand Eiteneuer

Old Results from CheckMATE and SCYNet (8 TeV)

Project the 11-d pMSSM parameter space onto the masses of \tilde{g} and $\tilde{\chi}^0_1$

Figure: Minimum pMSSM-11 χ^2 in the \tilde{g} - $\tilde{\chi}_1^0$ mass plane

Source: arXiv 1703.01309

Comparison CM - SN

Figure: Difference between the CheckMATE and SCYNet χ^2

Source: arXiv 1703.01309

- Test SUSY against LHC data with a proper tool → SCYNet (SUSY Calculating Yield Net)
- 11 parameters as input, χ^2 as output
- Use Neural Network for reducing time.
- 13 TeV analyses (14 ATLAS + 1 CMS) for strong and electroweak processes
- \bullet Still need more statistics in RTLP regions to improve χ^2

Test SUSY against LHC data with a proper tool → SCYNet (SUSY Calculating Yield Net)

- 11 parameters as input, χ^2 as output
- Use Neural Network for reducing time.
- 13 TeV analyses (14 ATLAS + 1 CMS) for strong and electroweak processes
- \bullet Still need more statistics in RTLP regions to improve χ^2

- Test SUSY against LHC data with a proper tool → SCYNet (SUSY Calculating Yield Net)
- 11 parameters as input, χ^2 as output
- Use Neural Network for reducing time.
- 13 TeV analyses (14 ATLAS + 1 CMS) for strong and electroweak processes
- Still need more statistics in RTLP regions to improve χ^2

- Test SUSY against LHC data with a proper tool
 → SCYNet (SUSY Calculating Yield Net)
- 11 parameters as input, χ^2 as output
- Use Neural Network for reducing time.
- 13 TeV analyses (14 ATLAS + 1 CMS) for strong and electroweak processes
- \bullet Still need more statistics in RTLP regions to improve χ^2

- Test SUSY against LHC data with a proper tool
 → SCYNet (SUSY Calculating Yield Net)
- 11 parameters as input, χ^2 as output
- Use Neural Network for reducing time.
- 13 TeV analyses (14 ATLAS + 1 CMS) for strong and electroweak processes
- Still need more statistics in RTLP regions to improve χ^2

- Test SUSY against LHC data with a proper tool
 → SCYNet (SUSY Calculating Yield Net)
- 11 parameters as input, χ^2 as output
- Use Neural Network for reducing time.
- 13 TeV analyses (14 ATLAS + 1 CMS) for strong and electroweak processes
- \bullet Still need more statistics in RTLP regions to improve χ^2

Thank you for your attention

References

1	- 12	ς.	

Philip Bechtle, Sebastian Belkner, Daniel Dercks, Matthias Hamer, Tim Keller, Michael Krämer, Björn Sarrazin, Jan Schütte-Engel, Jamie Tattersall, *SCYNet: Testing supersymmetric models at the LHC with neural networks*, arXiv:1703.01309v2 [hep-ph] 14 Mar 2017.

Michael A. Nielsen, Neural Networks and Deep Learning, Determination Press, 2015.

Christopher M. Bishop, Pattern Recognition and Machine Learning, Springer , 2006.

Jan Schütte-Engel, Searching for physics beyond the Standard Model at the LHC in the framework of the pMSSM-11 by using a neural network approach, Master thesis, 2016.

Ferdinand Eiteneuer, Improving Supersymmetric Model Fits with Neural Networks, Master thesis, 2017.
Preselection Criteria for LHC Event Generation

Use pMSSM-11 as model of interest

- No tachyons in the spectrum
- χ_1^0 is LSP
- $m_{h^0}, m_{H^0} > 110 \ GeV$

•
$$m_{\chi_1^\pm} > 103.5~GeV$$

• $5 \times \sqrt{\sigma_{theory}^2 + \sigma_{exp.}^2} > |$ theory value $- \exp$. value|for the EW precision observables $m_W, \ \Delta m_s, \ BR(B_s \to \mu\mu), \ BR(b \to s\gamma), \ BR(B_u \to \tau\nu)$

Restrict the pMSSM-11 parameter space to phenomenologically viable regions.

CheckMATE (Check Models At Terascale Energies)

- Test SUSY model against LHC data
- Check if the model is excluded or not at 95% C.L.

Input

Cross sections and their errors for all processes

• Output

 $\hat{N}_{i,j,k}$: number of signal events from process i in SR k of analysis j

 $N_{i,j,k}$: normalised number of signal events from process i in SR k of analysis j

 $N_{jk} = \sum_{i=1}^{n} N_{i,j,k}$: normalized number of events in SR k of analysis j for all processes + statistical error + systematical error

 O_{jk} number of observed events in SR k of analysis j (experiment)

Logarithm of the profile likelihood ratio (PLR) for each SR k of each analysis j

Bron-Kerbosch Algorithm for Selecting disjoint SRs

- Orthogonal group 1: $\{A, B, C\}$, $\{D\}$
- Orthogonal group 2: $\{E, G\}$, $\{H, F\}$

More on Neural Network

• Sigmoid function:

$$a(w.x+b) = \frac{1}{1 + \exp^{-(w.x+b)}}$$

- Output depends on all weights and biases
- Construction of g: training phase Interpolation set: training set
- Evaluation of the total error on validation set after training

Adam Optimizer (Adaptive Moment estimation)

- Minimization algorithm which relies only on first order information
- 4 hyperparameters (chosen at the beginning but can be changed after each training epoch)

pMSSM-11 parameters and scan ranges

parameter	scan range
<i>M</i> ₁	[-4000,4000] GeV
<i>M</i> ₂	[100,4000] GeV
<i>M</i> ₃	[-4000,-400]∪[400,4000] GeV
$m_{\tilde{q}_{12}}$	[300,5000] GeV
$m_{\tilde{q}_3}$	[100,5000] GeV
$m_{\tilde{l}_{12}}$	[100,3000] GeV
$m_{\tilde{l}_3}$	[100,4000] GeV
m_{A^0}	[0,4000] GeV
A ⁰	[-5000,5000] GeV
μ	[-5000,-100]∪[100,5000] GeV GeV
tan β	[1,60]

Indirect approach

Figure: Performance of the neural network trained on the reparametrized pMSSM-11 points on the cMSSM (a) and AMSB (b). In each bin the mean difference was calculated for all validation points.

Source: arXiv 1703.01309

Information of event generation

scanned points:

\sqrt{s}	scanned points
13 TeV (old)	140000
13 TeV (new)	170000

Disjoint signal regions:

\sqrt{s}	disjoint SRs
13 TeV (old)	65
13 TeV (new)	64