

b-tagging calibration using the $t\overline{t}$ PDF method with the ATLAS experiment in Run II

Jannik Geisen Supervised by: Arnulf Quadt

II. Physikalisches Institut, Georg-August-Universität Göttingen

Special thanks to the whole $t\overline{t}$ PDF *b*-calibration team

Helmholtz Alliance Terascale Meeting 2017 DESY, 28.11.2017

Bundesministerium für Bildung und Forschung

Outline

- 1. *b*-tagging calibration in ATLAS
 - Motivation
 - The MV2c10 algorithm in ATLAS
- 2. The PDF likelihood method in dileptonic $t\overline{t}$ events
 - Idea
 - Setup
 - Studies & Results
- 3. Outlook
 - Next steps
 - Further improvements

b-tagging calibration in ATLAS

Why is b/flavour-tagging so important?

- LHC collides protons \Rightarrow always have many jets (also from pileup)
- LHC is a "top factory" \Rightarrow BR($t \rightarrow$ Wb) pprox 100%
- *b*-tagging one of leading uncertainties in many ATLAS top analyses
- BR $(H \rightarrow b\overline{b}) \approx 58\%$ $\Rightarrow b$ -tagging also important for $t\overline{t}H$, VH & BSM analyses
- Some analyses must reject *b*-jets! (e.g. $H \rightarrow \tau \tau$)

Multivariate analysis approach to identify *b*-jets

- Most vital input: charged particle tracks reconstructed in inner detector
- Information from tracks associated to jets used in different algorithms
- Run II: Insertable B-Layer (IBL)! \rightarrow positive impact on *b*-tagging (*b*-tagging performance plots with/without IBL)
- Tracking improved in Run II (+), but jets have higher boost on average (-)

ATLAS uses 3 distinct basic *b*-tagging algorithms

- 1. Impact parameter based
- 2. Inclusive secondary vertex reconstruction
- 3. Decay chain multi-vertex reconstruction

- Complementary algorithms, output combined in multivariate discriminant
- Trained on $\approx 5M \ t\overline{t}$ events:
 - Signal: *b*-jets
 - Background: mixture of 10% c-jets + 90% light-jets
 - \Rightarrow Best separation for different jet flavours: | MV2c10

Improvements from Run I to Run II: ATL-PHYS-PUB-2015-022 MV2 optimisation studies: ATL-PHYS-PUB-2016-012

What does 'calibration' mean in *b*-tagging?

- Choose working point of your algorithm, e.g. $\epsilon_b = 70\%$ $\Rightarrow 70\%$ of *b*-jets are *b*-tagged in MC
 - \Rightarrow What about data?
- Perform calibration: Estimate ϵ_b^{data} and corresponding uncertainties
- Analysers apply SF $\kappa = \epsilon_b^{data}/\epsilon_b^{MC}$ to correct data/MC difference
- κ should be close to 1 \rightarrow shows good performance of algorithm

Examples of different strategies & environments

- Run II: *b*-jets in dileptonic $t\bar{t}$ with combinatorial likelihood approach (Run I: ATLAS-CONF-2014-004)
- *b*-jets in dileptonic $t\overline{t}$ with tag-and-probe method
- *b*-jets in I+jets $t\overline{t}$ with tag-and-probe method
- light-flavour jets in di-jet events with negative tag method
- *c*-jets with "JetFitterCharm" in I+jets $t\bar{t}$ (ATL-PHYS-PUB-2015-001)

The **P**robability **D**ensity **F**unction likelihood method in dileptonic $t\overline{t}$ events

b-tagging calibration in dileptonic $t\overline{t}$ using PDF likelihood method

- Select as many events rich in *b*-jets as possible
- Dileptonic $t\bar{t}$ events \rightarrow pure final state $(l^+l^-\nu\bar{\nu}b\bar{b})$, low *c*-jet contribution \Rightarrow Main background: light-jets from initial/final state radiation
- Split into 6 channels for control: (ee, $\mu\mu$, e μ) X (2j, 3j)
- Perform fit to likelihood function in all data events
 ⇒ Extract ε_b as function of jet p_T
- Derive data/MC scale factors and systematic uncertainties

PDF likelihood method

Likelihood method

Per-event likelihood function for two jet case:

$$\mathcal{L}(p_{T,1}, p_{T,2}, w_1, w_2) = [f_{bb} \mathcal{P}_{bb}(p_{T,1} p_{T,2}) \mathcal{P}_b(w_1 | p_{T,1}) \mathcal{P}_b(w_2 | p_{T,2}) + f_{bl} \mathcal{P}_{bl}(p_{T,1} p_{T,2}) \mathcal{P}_b(w_1 | p_{T,1}) \mathcal{P}_l(w_2 | p_{T,2}) + f_{ll} \mathcal{P}_{ll}(p_{T,1} p_{T,2}) \mathcal{P}_l(w_1 | p_{T,1}) \mathcal{P}_l(w_2 | p_{T,2}) + 1 \leftrightarrow 2]/2$$

- $f_{bb}, f_{bl}, f_{ll} = 1 f_{bb} f_{bl}$: two jet flavour fractions
- $\mathcal{P}_f(w|p_T)$: PDF for *b*-tag weight for jet flavour *f*, depending on jet p_T
- $\mathcal{P}_{f_1f_2}(p_{T,1}, p_{T,2})$: two-dim PDF for combination of $[p_{T,1}, p_{T,2}]$ & $[f_1, f_2]$
- PDFs implemented as binned histograms

Define total likelihood function, to be maximised on all data events:

$$\mathcal{L}_{tot} = \exp\left(-N\right) \prod_{i=1}^{N_{events}} \mathcal{L}\left(p_{T,1,i}, p_{T,2,i}, w_{1,i}, w_{2,i}\right)$$

Extract
$$\mathcal{P}_{b}(w|p_{T})$$
 from fit $\Rightarrow \underline{\epsilon_{b}(p_{T})} = \int_{w_{cut}}^{\infty} \mathrm{d}w' \mathcal{P}_{b}(w'|p_{T})$

PDF Likelihood method

Event selection

11 / 22

- Exactly 2 oppositely charged (OS) leptons (e, μ):
 - Trigger-matched, tight isolation, no overlap with jets
 - $p_{
 m T}>28~{
 m GeV}, |\eta_{\mu}|<2.5, |\eta_{
 m el}|<2.47$ (exclude $1.37<|\eta_{
 m el}|<1.52$),
- Exactly two or three jets:
 - Anti- k_t with $\Delta R = 0.4$ from the calorimeter
 - jet $p_{
 m T} \geq$ 20 GeV, jet $|\eta| <$ 2.5
- End up with 6 channels:
 - $ee, \mu\mu$ dominated by Z+jets (smaller background: single top, Diboson) \Rightarrow Allow to constrain Z+jets and improve stat
 - $e\mu$ highest purity; main bkgd: single top \Rightarrow Consider $e\mu$ +2j for calibration

- Analyse ATLAS 2015+2016 data at $\sqrt{s} = 13$ TeV with $\int L \ dt = 36.1 \ {
 m fb}^{-1}$
- Compare to MC simulation for dileptonic $t\overline{t}$ signal & background:

Process	Nominal MC	Alternative MC
Signal:		
tī	Powheg+Pythia8	Sherpa 2.2.1
Background:		
Z+jets	Sherpa 2.2.1	Powheg+Pythia8
Single top	Powheg+Pythia6	-
Diboson	Powheg+Pythia8	Sherpa 2.2.1
Lepton fakes	From data	-
W+jets	Sherpa 2.2.1	-

This is work in progress, more alternative samples are being produced!

PDF Likelihood method Initial control plots in ee+2j

13 / 22

PDF Likelihood method Apply cut in ee+2j

After cut on $E_T^{\text{miss}} > 60$ GeV and 50 GeV $< m_{II} < 80$ GeV or $m_{II} > 100$ GeV:

PDF Likelihood method Additional cut in eµ

- $e\mu$ channel has highest purity ($\approx 7 - 14\%$ larger than $ee, \mu\mu$)
- Low Z+jets background
 ⇒ no MET or m_{II} cuts applied

Think of further cut:

- Build all possible pairs of leptons and jets \Rightarrow look at $m_{I,j}$
- If lepton and jet from same top, $m_{l,j}$ has end point at $\approx m_{top}$
- Combine leptons with jets such that $\left(m_{l_1,j_1}^2+m_{l_2,j_2}^2\right)$ minimal

 \Rightarrow Require $m_{l,j} < 175$ GeV for one or both pairs

Check $m_{I,j}$ split by flavours:

PDF Likelihood method Apply 2 lepton cut in $e\mu+2i$

GEORG-AUGUST-UNIVERSITÄT

PDF Likelihood method Renormalisation of MC

Select regions to extract data/MC renormalisation scale factors for $t\bar{t} \& Z+jets \Rightarrow$ Improve Data/MC agreement before fit

Use same-sign (SS) lepton events to estimate non-prompt and fake leptons

Process	eμ	ee, $\mu\mu$
tī	2 OS leptons	2 OS leptons
	Different lep flavour	Same lep flavour
		50 GeV $< m_{\prime\prime} <$ 80 GeV or
		$m_{II} > 100$ GeV; $E_T^{\rm miss} > 60$ GeV
Z+jets	2 OS leptons	2 OS leptons
	Same lep flavour	Same lep flavour
	80 GeV $< m_{\prime\prime} <$ 100 GeV	80 GeV $< m_{ } <$ 100 GeV;
		$E_T^{\rm miss} > 60 { m GeV}$
Non-prompt/	2 SS leptons	2 SS leptons
fake leptons	Different lep flavour	Same lep flavour
		50 GeV $< m_{II} <$ 80 GeV or
		$m_{II} > 100$ GeV; $E_T^{miss} > 60$ GeV

- *Z*+jets SF between 0.96 1.05
- $t\overline{t}$ signal SF between 0.98 1.03
- Contribution from fakes found to be negligible

Main systematics:

- Monte Carlo Generator
 - \Rightarrow Currently: only Powheg+Pythia8 vs. Sherpa available
 - \Rightarrow Future: Powheg vs. MadGraph5_aMC@NLO; Pythia8 vs. Herwig7
- Pileup modelling
- Jets
 - Jet energy scale
 - Jet energy resolution
 - Jet vertex tagger
- Leptons
 - Trigger
 - Identification
 - Isolation

Fit input MV2c10 for first jet in $e\mu+2j$

 $\epsilon_b = 70\%$: Before cut

- Scale factor decreases after jet $p_{\rm T} pprox 150~{
 m GeV}$
- Data/MC agreement on 2-jet flavour fraction improved after 2 lepton cut
- Systematics in the order of few $\% \rightarrow$ main syst. uncertainty: MC modelling

After 2 lepton cut

Summary

- b-tagging is an indispensable tool in LHC analyses
- Calibration of *b*-tagging algorithms necessary to correct MC eff. to data
- Performed *b*-tagging calibration in $e\mu$ +2j channel of $t\bar{t}$ events
- PDF likelihood fit results with MV2c10 (fixed cut) shown
 - Good data/MC agreement observed
 - SF divergence from 1 at high jet $p_{\rm T}$ reduced by 2 lepton cut

- Include 2017 data asap
 ⇒ Need appropriate MC simulation including pileup modelling
- Studying new tagging algorithms in $A_{\rm TLAS}$
 - Deep learning tagging algorithm "DL1" (based on neural network)
 - Hybrid cut instead of fixed cut (equal to fixed cut for jet $p_T < 250$ GeV; afterwards p_T -dependent efficiency)
- Implement BDT to further discriminate signal from background

Thank you for your attention!

Backup

MC Normalisation SF

