CP Violation Measurements at B-Factories and Hadron Colliders

Terascale Workshop 28.11.2017

Thomas Kuhr LMU Munich

CP Violation

Condition for matter anti-matter asymmetry in the universe

V_{qq}'

 CP Violation: rate(process) ≠ rate(process after parity and charge conjugation transformation)

- So far only observed in quark flavor changing charged weak interaction processes
- W boson coupling strength to quark pairs given by CKM matrix: 4 free parameters, e.g. three angles and one phase δ

$$V_{CKM} = \begin{pmatrix} \cos\theta_{12}\cos\theta_{13} & \sin\theta_{12}\cos\theta_{13} & \sin\theta_{13}e^{-i\delta} \\ -\sin\theta_{12}\cos\theta_{23} - \cos\theta_{12}\sin\theta_{23}\sin\theta_{13}e^{i\delta} & \cos\theta_{12}\cos\theta_{23} - \sin\theta_{12}\sin\theta_{23}\sin\theta_{13}e^{i\delta} & \sin\theta_{23}\cos\theta_{13} \\ \sin\theta_{12}\sin\theta_{23} - \cos\theta_{12}\cos\theta_{23}\sin\theta_{13}e^{i\delta} & -\cos\theta_{12}\sin\theta_{23} - \sin\theta_{12}\cos\theta_{23}\sin\theta_{13}e^{i\delta} & \cos\theta_{23}\cos\theta_{13} \end{pmatrix}$$

→ CP inverts phase: $V_{qq'} \rightarrow V_{qq'}^*$

CP Violation \rightarrow Interference

- No CP violation
- Interference of two amplitudes required for CP violation
- → Relative phase ↔ interference pattern
- Potentially sensitive to new physics: $|A_{SM} + A_{NP}|^{2} = |A_{SM}|^{2} + 2Re(A_{SM}^{*}A_{NP}) + |A_{NP}|^{2}$

Interference of Two Amplitudes

Types of CP Violation

- Direct CP violation: change of flavor quantum number by ±1
- CP violation in decay

$$A_{CP} = \frac{\Gamma(\bar{X} \to \bar{f}) - \Gamma(X \to f)}{\Gamma(\bar{X} \to \bar{f}) + \Gamma(X \to f)} = \frac{2|A_1||A_2|\sin\Delta\phi\sin\Delta\delta}{|A_1|^2 + |A_2|^2 + 2|A_1||A_2|\cos\Delta\phi\cos\Delta\delta}$$

- Indirect CP violation: change of flavor quantum number by ±2
- Neutral weakly decaying mesons (K⁰, D⁰, B⁰, B⁰_s)

CP Violation in Mixing

Oscillation of flavor eigenstates
→ mass/lifetime eigenstates

$$\begin{aligned} \left| B_L^0 \right\rangle &= p \left| B^0 \right\rangle + q \left| \bar{B}^0 \right\rangle, \quad |p|^2 + |q|^2 = 1 \\ \left| B_H^0 \right\rangle &= p \left| B^0 \right\rangle - q \left| \bar{B}^0 \right\rangle \end{aligned}$$

• Oscillation frequency: $\Delta m = m_{H} - m_{L}$

$$A_{mix}(t) = \frac{\Gamma(B^0 \to B^0) - \Gamma(B^0 \to \bar{B}^0)}{\Gamma(B^0 \to B^0) + \Gamma(B^0 \to \bar{B}^0)} = \cos(\Delta m t)$$

- CP violation in mixing
- Condition: $|q/p| \neq 1$ $a_{SL} = \frac{\Gamma(\bar{B}^0 \to B^0) - \Gamma(B^0 \to \bar{B}^0)}{\Gamma(\bar{B}^0 \to B^0) + \Gamma(B^0 \to \bar{B}^0)} = \frac{1 - |q/p|^4}{1 + |q/p|^4}$
- Observed for kaons: $|\epsilon| = (2.228 \pm 0.011) \times 10^{-3} 0.02$

Mixing Induced CP Violation

- Condition: $\operatorname{Im}(\lambda_{f}) \neq 1$ $\lambda_{f} = \frac{q}{p} \frac{A_{f}}{A_{f}}$ $p A_f$ $A_f(t) = \frac{\Gamma(\bar{B}^0 \to f) - \Gamma(B^0 \to f)}{\Gamma(\bar{B}^0 \to f) + \Gamma(B^0 \to f)} = C \cos(\Delta m t) + S \sin(\Delta m t)$ $C = \frac{1 - |\lambda_f|^2}{1 + |\lambda_f|^2}$ $S = \frac{2 \text{Im}(\lambda_f)}{1 + |\lambda_f|^2}$ For CP(f) = p f and po CP violation is minimum.
- → For CP(f) = η_f and no CP violation in mixing and decay:

 $S_{\rm CP} = -\eta_{\rm CP} \sin(\phi_M - 2\phi_f)$

Golden Mode ($b \rightarrow c\bar{c}s$)

$$\beta = \phi_1 = \arg\left(-\frac{V_{cd}V_{cb}^*}{V_{td}V_{tb}^*}\right)$$

CP Measurement at B Factories

 $sin(2\beta) = sin(2\varphi_1)$

• LHCb (arXiv:1709.03944): $S = (0.760 \pm 0.034)$

 $b \rightarrow c \overline{c} d$

 $b \rightarrow q\overline{q}s$

LMU Thomas Kuhr

 $\alpha = \varphi_2$

$$\alpha = \phi_2 = \arg\left(-\frac{V_{td}V_{tb}^*}{V_{ud}V_{ub}^*}\right)$$

- Penguin pollution can be determined with isospin analysis
- $A^{+-} = A(B^0 \to \pi^+\pi^-), A^{00} = A(B^0 \to \pi^0\pi^0), A^{+0} = A(B^+ \to \pi^+\pi^0)$
- $A^{+-}/\sqrt{2} + A^{00} = A^{+0} \rightarrow$ Triangle in complex plane
- Only tree contribution to $A^{+0} \rightarrow |A^{+0}| = |\overline{A}^{-0}|$
- → Different triangles for B and \overline{B} → Penguin pollution

 $B \rightarrow \pi \pi$

• $a^{ij} = A^{ij} / A^{+0} \rightarrow a^{+-} / \sqrt{2} + a^{00} = 1$

$B \rightarrow \rho \rho$

- > $J(\rho) = 1 \rightarrow \rho\rho$ final state is mixture of CP even and odd
- → Angular analysis: $f_{\mu}(B^0 \rightarrow \rho^+ \rho^-) = 0.99 \pm 0.02$

 $\alpha = \varphi_2$

 $\gamma = \varphi_3$

us

Vub

$$\gamma = \phi_3 = \arg\left(-\frac{V_{ud}V_{ub}^*}{V_{cd}V_{cb}^*}\right)$$

- GLW (Gronau, London, Wyler) \rightarrow CP eigenstates: $K^+K^-, \pi^+\pi^-, K^0_s\pi^0$
- ADS (Atwood, Dunietz, Soni) \rightarrow CF/DCS flavor eigenstates: $K^{-}\pi^{+}(\pi^{0})$
- GGSZ (Gigi, Grossman, Soffer, Zupan) \rightarrow 3 body decays: $K^{0}_{s}\pi^{+}\pi^{-}, K^{0}_{s}K^{+}K^{-}$

 $\gamma = \varphi_3$

CKM Fit

CP Violation in B_s System

B_s: Direct CP Violation

Charm Mesons

Baryons, B_c

Heavy FLavor AVeraging group (HFLAV) - August 2017 Compilation of CP Asymmetries for Λ^0 baryons							
Ir	1 PDG2014	New since PD	New since PDG2014 (published)				
RPP#	Mode	PDG2014 Avg.	CDF	LHCb	Our Avg.		
21	$p\pi^-$	0.03 ± 0.18	$0.06 \pm 0.07 \pm 0.03$		0.06 ± 0.08		
22	pK^-	0.37 ± 0.17	$-0.10 \pm 0.08 \pm 0.04$		-0.10 ± 0.09		
	$\overline{K^0}p\pi^-$			$0.22 \pm 0.13 \pm 0.03$	0.22 ± 0.13		
	$\Lambda K^+ \pi^-$			$-0.53 \pm 0.23 \pm 0.11$	-0.53 ± 0.26		
	ΛK^+K^-			$-0.28 \pm 0.10 \pm 0.07$	-0.28 ± 0.12		
	$pK^-\mu^+\mu^-$			$-0.035\pm0.05\pm0.002$	-0.035 ± 0.050		

- No CP violation in baryon decays observed yet
- No CP asymmetry measurements of B decays yet

Summary and Outlook

- CP violation observed in quark flavor changing processes
- → One parameter in CKM matrix → Powerful test of SM

Observable	Current uncert.	Expected uncert.	Facility (2025)
$\Phi_1 = \beta$ [°]	0.7	0.4	Belle II
$\Phi_2 = \alpha [°]$	4.2	1.0	Belle II
$Φ_3 = γ [°]$	4.7	1.0	Belle II / LHCb
$S(B_s \rightarrow J/\psi \phi)$	0.03	0.01	LHCb
$S(B \rightarrow \phi K^0)$	0.14	0.02	Belle II
$\beta_{s}^{eff}(B_{s} \rightarrow \Phi \Phi)$ [rad]	0.15	0.10	LHCb
A(B $\rightarrow K^{0} \pi^{0}$) [10 ⁻²]	13	4	Belle II
A(B \rightarrow K ⁺ π^{-}) [10 ⁻²]	0.6	0.2	LHCb / Belle II

Backup

Wolfenstein Parametrization

Graphical representation of unitarity condition: $\sum_{i} V_{ij} V_{ik}^* = \delta_{jk}$

• e.g. for j=1, k=3: $V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0$

Time Dependent Asymmetry

B^o Reconstruction

