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• Weak interaction in the SM is special!

• Only interaction that allows changing flavour, 

violates Parity and CP symmetries.


• Experimentally observe universal coupling for 
leptons and apparent non-universality for quarks 


• Mediated by massive force carriers
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The Weak interaction and the CKM Mechanism

i.a Introduction: The CKM Matrix (1/2)

SM quark flavor sector requires the knowledge of the quark masses and of
strength of the charged-current interactions.

Vkm

qk

qm

W

Non-degeneracy of quark masses ) Weak and Mass
eigenstates di↵er by rotation of VCKM :

* Experimental evidence of strong hierarchy.

* V
†
CKM

VCKM = 1 ) 4 independent parameters: 3 real + 1 complex

! Hierarchy exploited by Wolfenstein Parametrization:

A, � ⇡ 0.22, ⇢, i ⌘
with |⇢ + i⌘| = O(1)
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Intimate link to Higgs sector of SM
Quark fields:

U 0 = (u0, c0, t0)
D0 = (d0, s0, b0)

1 INTRODUCTION

The study of elementary particles and their electromagnetic, weak and strong interactions has
led to a particularly successful theory, the Standard Model (SM). The SM has been extensively
tested, culminating with the recent discovery of the Higgs boson [1, 2] at the Large Hadron
Collider (LHC). In the development of this description, quark flavour physics has played a central
role in two di↵erent aspects. First, the SM embeds the Kobayashi–Maskawa mechanism: The
Cabibbo–Kobayashi–Maskawa (CKM) mixing matrix [3, 4] arising in charged weak interactions
represents the single source of all observed di↵erences between particles and antiparticles, namely
CP violation in the quark sector. Second, flavour-changing currents (in particular, neutral ones)
have repeatedly revealed evidence for new, heavier degrees of freedom (charm quark, weak gauge
bosons, top quark) before their discovery.

Yet the SM fails in some key aspects. Why is there such a large number of parameters for
quark masses and the CKM mixing matrix, spanning such a wide range of values? Why are
the electroweak and strong interactions treated separately? Why is antimatter absent from the
observed universe, even though the amount of CP violation in the SM is too small to produce
the observed matter–antimatter asymmetry [5–8]? New Physics (NP) extensions of the SM
are expected to address these issues by including heavier particles related to higher-energy
phenomena. The related shorter-distance interactions would have immediate consequences
not only in production experiments at high energies but also through deviations from the SM
predictions in flavour processes (new sources of CP violation, interferences between SM and NP
contributions).

Therefore, a precision study of the CKM matrix is certainly desirable from a practitioner’s
point of view: Performing the metrology of the SM parameters yields accurate predictions for weak
transitions, including CP -violating processes. But it is also required from a more theoretical point
of view: The mixing due to the CKM matrix in weak processes has a very simple and constrained
structure in the SM and is generally a↵ected significantly by NP extensions, constituting a very
powerful probe of models beyond the SM. The need for an accurate determination of the CKM
matrix has led to an impressive e↵ort from the experimental community, specifically the extensive
research performed at the BaBar and Belle experiments, the large data samples available at the
LHC, and the advent of the high-luminosity Belle-II B factory. The theoretical community has
also made remarkable progress in the understanding of strong and weak interactions of the quarks,
both analytically (in particular, through the development of e↵ective theories) and numerically
(with improvements in lattice simulations of QCD). Thus, very high precision measurements
of CKM parameters are both needed and currently accessible, and they are the object of this
review. We discuss the theoretical grounds related to the CKM matrix in Section 2, review the
main experimental constraints on its parameters in Section 3, and present examples of global
analyses of the CKM matrix and the impact of NP contributions in Section 4.

2 THE CKM MATRIX

2.1 Structure of the CKM Matrix

In the SM, the Lagrangian for the Yukawa coupling of the Higgs boson to the quark fields yields
(after electroweak symmetry breaking)

L
q

M
= �(Md)ijD0

Li
D0

Rj � (Mu)ijU 0

Li
U 0

Rj , (1)

where i and j are family indices, with U 0 = (u0, c0, t0) and D = (d0, s0, b0), and L and R indicate
the components with left- and right-handed chiralities, respectively. The prime symbols indicate
that these fields are not necessarily the mass eigenstates of the theory. The matrices Mu and Md

1

Couplings ~ Matrices related to Yukawa coupling matrices

Family indices

Yukawa coupling of Higgs boson to quark fields:

Chirality

are related to the Yukawa coupling matrices as Mq = vY q/
p
2, where v is the vacuum expectation

value (the neutral component) of the Higgs field. At this stage, Mu and Md are general complex

matrices to be diagonalised using the singular value decomposition Mq = V †

qL
mqVqR, where

VL,R is unitary and mq is diagonal, real, and positive. The mass eigenstates are identified as
UL = VuLU 0

L
and UR = VuRU 0

R
, and similarly for D.

Expressing the interactions of quarks with gauge bosons in terms of mass eigenstates does
not modify the structure of the Lagrangian in the case of neutral gauge bosons, but it a↵ects
charged-current interactions between quarks and W±, described by the Lagrangian

LW± = �
g
p
2
U i�

µ
1� �5

2
(VCKM)

ij
DjW

+
µ + h.c., (2)

where g is the electroweak coupling constant and VCKM = V †

uL
VdL is the unitary CKM matrix:

VCKM =

0

@
Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

1

A . (3)

The CKM matrix induces flavour-changing transitions inside and between generations in the
charged sector at tree level (W± interaction). By contrast, there are no flavour-changing
transitions in the neutral sector at tree level (Z0 and photon interactions). The CKM matrix
stems from the Yukawa interaction between the Higgs boson and the fermions, and it originates
from the misalignment in flavour space of the up and down components of the SU(2)L quark
doublets of the SM (as there is no dynamical mechanism in the SM to enforce VuL = VdL).
The VCKM,ij CKM matrix elements (hereafter, Vij) represent the couplings between up-type
quarks Ui = (u, c, t) and down-type quarks Dj = (d, s, b). There is some arbitrariness in the
conventions used to define this matrix. In particular, the relative phases among the left-handed
quark fields can be redefined, reducing the number of real parameters describing this unitary
matrix from three moduli and six phases to three moduli and one phase [more generally, for N
generations, one has N(N � 1)/2 moduli and (N � 1)(N � 2)/2 phases]. Because CP conjugate
processes correspond to interaction terms in the Lagrangian related by Hermitian conjugation,
the presence of a phase, and thus the complex nature of the CKM matrix, may induce di↵erences
between rates of CP conjugate processes, leading to CP violation. This does not occur for only
two generations, where VCKM is real and parametrised by a single real parameter, the Cabibbo
angle.

According to experimental evidence, transitions within the same generation are characterised
by VCKM elements of O(1). Those between the first and second generations are suppressed by a
factor of O(10�1); those between the second and third generations by a factor of O(10�2); and
those between the first and third generations by a factor of O(10�3). This hierarchy can be
expressed by defining the four phase convention–independent quantities as follows:

�2 =
|Vus|

2

|Vud|
2 + |Vus|

2
, A2�4 =

|Vcb|
2

|Vud|
2 + |Vus|

2
, ⇢̄+ i⌘̄ = �

VudV ⇤

ub

VcdV ⇤

cb

. (4)

An alternative convention exists in the literature for the last two CKM parameters, corresponding
to

⇢+ i⌘ =
V ⇤

ub

VusV ⇤

cb

=

✓
1 +

1

2
�2

◆
(⇢̄+ i⌘̄) +O(�4). (5)

The CKM matrix can be expanded in powers of the small parameter � (which corresponds to
sin ✓C ' 0.22) [9], exploiting the unitarity of VCKM to highlight its hierarchical structure. This
expansion yields the following parametrisation of the CKM matrix up to O

�
�6

�
:

2

3

The Weak interaction and the CKM Mechanism

• Weak interaction in the SM is special!

• Only interaction that allows changing flavour, 

violates Parity and CP symmetries.


• Experimentally observe universal coupling for 
leptons and apparent non-universality for quarks 


• Mediated by massive force carriers



Florian Bernlochner 11th Annual Meeting of the Helmholtz Alliance “Physics at the Terascale” 4

The Weak interaction and the CKM Mechanism

The mass matrices can be diagonalized by two separate unitary transformations A and B:

A†
u Mu Bu =

Q

ca
mu 0 0
0 mc 0
0 0 mt

R

db , (2.24)

A†
d

Md Bd =

Q

ca
md 0 0
0 ms 0
0 0 mb

R

db , (2.25)

A†
l
Ml Bl =

Q

ca
me 0 0
0 mµ 0
0 0 m·

R

db . (2.26)

Although the up- and down-type quarks are in the same SU(2)W doublet, their masses are
non-degenerate and therefore one needs di�erent transformations to diagonalize Mu and Md.
Diagonalizing the mass matrices leave the free field terms of the quark and lepton fields invariant,
e.g. the left-handed kinetic quark energy term is given by

1
B†

uu†
L

B†
d
d†

L

2
“0 i /̂

A
BuuL

BddL

B

= Q̄i

L i /̂ Qi

L . (2.27)

These unitary transformations define a new set of (mass) eigenstates,

uR = Au uÕ
R

, uL = Bu uÕ
L

,
dR = Ad dÕ

R
, dL = Bd dÕ

L
,

lR = Al lÕ
R

, lL = Bl lÕ
L

,
(2.28)

and the original left-handed quark doublet QL becomes
A

uL

dL

B

=
A

BuuÕ
L

BddÕ
L

B

= Bu

A
uÕ

L

VCKM dÕ
L

B

, (2.29)

where the Cabibbo-Kobayashi-Maskawa (CKM) mixing matrix is defined by

VCKM = B†
u Bd . (2.30)

Reparametrizing the Standard Model Lagrangian in terms of the mass eigenstates results in no
changes for the free field terms of the quarks, cf. Eq. (2.27). The coupling to the Z0 boson and
the electromagnetic coupling also are una�ected, since they both involve no couplings between
up- and down-type quark fields. The weak coupling to the W ± bosons, however, is a�ected:

LW ± quark int. = g2Ô
2

W +
µ ūÕ

L “µ VCKM dÕ
L + h.c. , (2.31)

and as a consequence flavor changing charged currents occur at tree-level in the Standard Model.
Unitary matrices form a group under matrix multiplication, i.e. the CKM matrix Eq. (2.30) is
unitary and specified by nine real parameters. The CKM matrix elements,

VCKM =

Q

ca
Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb

R

db , (2.32)
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LHC, and the advent of the high-luminosity Belle-II B factory. The theoretical community has
also made remarkable progress in the understanding of strong and weak interactions of the quarks,
both analytically (in particular, through the development of e↵ective theories) and numerically
(with improvements in lattice simulations of QCD). Thus, very high precision measurements
of CKM parameters are both needed and currently accessible, and they are the object of this
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The CKM matrix induces flavour-changing transitions inside and between generations in the
charged sector at tree level (W± interaction). By contrast, there are no flavour-changing
transitions in the neutral sector at tree level (Z0 and photon interactions). The CKM matrix
stems from the Yukawa interaction between the Higgs boson and the fermions, and it originates
from the misalignment in flavour space of the up and down components of the SU(2)L quark
doublets of the SM (as there is no dynamical mechanism in the SM to enforce VuL = VdL).
The VCKM,ij CKM matrix elements (hereafter, Vij) represent the couplings between up-type
quarks Ui = (u, c, t) and down-type quarks Dj = (d, s, b). There is some arbitrariness in the
conventions used to define this matrix. In particular, the relative phases among the left-handed
quark fields can be redefined, reducing the number of real parameters describing this unitary
matrix from three moduli and six phases to three moduli and one phase [more generally, for N
generations, one has N(N � 1)/2 moduli and (N � 1)(N � 2)/2 phases]. Because CP conjugate
processes correspond to interaction terms in the Lagrangian related by Hermitian conjugation,
the presence of a phase, and thus the complex nature of the CKM matrix, may induce di↵erences
between rates of CP conjugate processes, leading to CP violation. This does not occur for only
two generations, where VCKM is real and parametrised by a single real parameter, the Cabibbo
angle.

According to experimental evidence, transitions within the same generation are characterised
by VCKM elements of O(1). Those between the first and second generations are suppressed by a
factor of O(10�1); those between the second and third generations by a factor of O(10�2); and
those between the first and third generations by a factor of O(10�3). This hierarchy can be
expressed by defining the four phase convention–independent quantities as follows:

�2 =
|Vus|

2

|Vud|
2 + |Vus|

2
, A2�4 =

|Vcb|
2

|Vud|
2 + |Vus|

2
, ⇢̄+ i⌘̄ = �

VudV ⇤

ub

VcdV ⇤

cb

. (4)

An alternative convention exists in the literature for the last two CKM parameters, corresponding
to

⇢+ i⌘ =
V ⇤

ub

VusV ⇤

cb

=

✓
1 +

1

2
�2

◆
(⇢̄+ i⌘̄) +O(�4). (5)

The CKM matrix can be expanded in powers of the small parameter � (which corresponds to
sin ✓C ' 0.22) [9], exploiting the unitarity of VCKM to highlight its hierarchical structure. This
expansion yields the following parametrisation of the CKM matrix up to O

�
�6

�
:

2
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non-degenerate and therefore one needs di�erent transformations to diagonalize Mu and Md.
Diagonalizing the mass matrices leave the free field terms of the quark and lepton fields invariant,
e.g. the left-handed kinetic quark energy term is given by

1
B†

uu†
L

B†
d
d†

L

2
“0 i /̂

A
BuuL

BddL

B

= Q̄i

L i /̂ Qi

L . (2.27)

These unitary transformations define a new set of (mass) eigenstates,

uR = Au uÕ
R

, uL = Bu uÕ
L

,
dR = Ad dÕ

R
, dL = Bd dÕ

L
,

lR = Al lÕ
R

, lL = Bl lÕ
L

,
(2.28)

and the original left-handed quark doublet QL becomes
A

uL

dL

B

=
A

BuuÕ
L

BddÕ
L

B

= Bu

A
uÕ

L

VCKM dÕ
L

B

, (2.29)

where the Cabibbo-Kobayashi-Maskawa (CKM) mixing matrix is defined by

VCKM = B†
u Bd . (2.30)

Reparametrizing the Standard Model Lagrangian in terms of the mass eigenstates results in no
changes for the free field terms of the quarks, cf. Eq. (2.27). The coupling to the Z0 boson and
the electromagnetic coupling also are una�ected, since they both involve no couplings between
up- and down-type quark fields. The weak coupling to the W ± bosons, however, is a�ected:

LW ± quark int. = g2Ô
2

W +
µ ūÕ

L “µ VCKM dÕ
L + h.c. , (2.31)

and as a consequence flavor changing charged currents occur at tree-level in the Standard Model.
Unitary matrices form a group under matrix multiplication, i.e. the CKM matrix Eq. (2.30) is
unitary and specified by nine real parameters. The CKM matrix elements,

VCKM =

Q

ca
Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb

R

db , (2.32)
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are related to the Yukawa coupling matrices as Mq = vY q/
p
2, where v is the vacuum expectation

value (the neutral component) of the Higgs field. At this stage, Mu and Md are general complex

matrices to be diagonalised using the singular value decomposition Mq = V †

qL
mqVqR, where

VL,R is unitary and mq is diagonal, real, and positive. The mass eigenstates are identified as
UL = VuLU 0

L
and UR = VuRU 0

R
, and similarly for D.

Expressing the interactions of quarks with gauge bosons in terms of mass eigenstates does
not modify the structure of the Lagrangian in the case of neutral gauge bosons, but it a↵ects
charged-current interactions between quarks and W±, described by the Lagrangian

LW± = �
g
p
2
U i�

µ
1� �5

2
(VCKM)

ij
DjW

+
µ + h.c., (2)

where g is the electroweak coupling constant and VCKM = V †

uL
VdL is the unitary CKM matrix:

VCKM =

0

@
Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

1

A . (3)

The CKM matrix induces flavour-changing transitions inside and between generations in the
charged sector at tree level (W± interaction). By contrast, there are no flavour-changing
transitions in the neutral sector at tree level (Z0 and photon interactions). The CKM matrix
stems from the Yukawa interaction between the Higgs boson and the fermions, and it originates
from the misalignment in flavour space of the up and down components of the SU(2)L quark
doublets of the SM (as there is no dynamical mechanism in the SM to enforce VuL = VdL).
The VCKM,ij CKM matrix elements (hereafter, Vij) represent the couplings between up-type
quarks Ui = (u, c, t) and down-type quarks Dj = (d, s, b). There is some arbitrariness in the
conventions used to define this matrix. In particular, the relative phases among the left-handed
quark fields can be redefined, reducing the number of real parameters describing this unitary
matrix from three moduli and six phases to three moduli and one phase [more generally, for N
generations, one has N(N � 1)/2 moduli and (N � 1)(N � 2)/2 phases]. Because CP conjugate
processes correspond to interaction terms in the Lagrangian related by Hermitian conjugation,
the presence of a phase, and thus the complex nature of the CKM matrix, may induce di↵erences
between rates of CP conjugate processes, leading to CP violation. This does not occur for only
two generations, where VCKM is real and parametrised by a single real parameter, the Cabibbo
angle.

According to experimental evidence, transitions within the same generation are characterised
by VCKM elements of O(1). Those between the first and second generations are suppressed by a
factor of O(10�1); those between the second and third generations by a factor of O(10�2); and
those between the first and third generations by a factor of O(10�3). This hierarchy can be
expressed by defining the four phase convention–independent quantities as follows:

�2 =
|Vus|

2

|Vud|
2 + |Vus|

2
, A2�4 =

|Vcb|
2

|Vud|
2 + |Vus|

2
, ⇢̄+ i⌘̄ = �

VudV ⇤

ub

VcdV ⇤

cb

. (4)

An alternative convention exists in the literature for the last two CKM parameters, corresponding
to

⇢+ i⌘ =
V ⇤

ub

VusV ⇤

cb

=

✓
1 +

1

2
�2

◆
(⇢̄+ i⌘̄) +O(�4). (5)

The CKM matrix can be expanded in powers of the small parameter � (which corresponds to
sin ✓C ' 0.22) [9], exploiting the unitarity of VCKM to highlight its hierarchical structure. This
expansion yields the following parametrisation of the CKM matrix up to O

�
�6

�
:

2
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qL
mqVqR, where

VL,R is unitary and mq is diagonal, real, and positive. The mass eigenstates are identified as
UL = VuLU 0

L
and UR = VuRU 0

R
, and similarly for D.

Expressing the interactions of quarks with gauge bosons in terms of mass eigenstates does
not modify the structure of the Lagrangian in the case of neutral gauge bosons, but it a↵ects
charged-current interactions between quarks and W±, described by the Lagrangian

LW± = �
g
p
2
U i�

µ
1� �5

2
(VCKM)

ij
DjW

+
µ + h.c., (2)

where g is the electroweak coupling constant and VCKM = V †

uL
VdL is the unitary CKM matrix:

VCKM =

0

@
Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

1

A . (3)

The CKM matrix induces flavour-changing transitions inside and between generations in the
charged sector at tree level (W± interaction). By contrast, there are no flavour-changing
transitions in the neutral sector at tree level (Z0 and photon interactions). The CKM matrix
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The VCKM,ij CKM matrix elements (hereafter, Vij) represent the couplings between up-type
quarks Ui = (u, c, t) and down-type quarks Dj = (d, s, b). There is some arbitrariness in the
conventions used to define this matrix. In particular, the relative phases among the left-handed
quark fields can be redefined, reducing the number of real parameters describing this unitary
matrix from three moduli and six phases to three moduli and one phase [more generally, for N
generations, one has N(N � 1)/2 moduli and (N � 1)(N � 2)/2 phases]. Because CP conjugate
processes correspond to interaction terms in the Lagrangian related by Hermitian conjugation,
the presence of a phase, and thus the complex nature of the CKM matrix, may induce di↵erences
between rates of CP conjugate processes, leading to CP violation. This does not occur for only
two generations, where VCKM is real and parametrised by a single real parameter, the Cabibbo
angle.

According to experimental evidence, transitions within the same generation are characterised
by VCKM elements of O(1). Those between the first and second generations are suppressed by a
factor of O(10�1); those between the second and third generations by a factor of O(10�2); and
those between the first and third generations by a factor of O(10�3). This hierarchy can be
expressed by defining the four phase convention–independent quantities as follows:
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The CKM matrix can be expanded in powers of the small parameter � (which corresponds to
sin ✓C ' 0.22) [9], exploiting the unitarity of VCKM to highlight its hierarchical structure. This
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Chapter 1.

Introduction

In the Standard Model of particle physics quarks and leptons come in three generations each
containing a pair of up and down-type quarks or a charged lepton and a neutrino. The properties
of quark and lepton pairs in each generation are identical except for their masses. The masses
of the quarks and charged leptons are generated from their couplings to the Higgs field. These
couplings lead to a puzzling hierarchy between the masses of quarks and charged leptons across
generations. Furthermore, the reason for exactly three generations remains a mystery of nature.

The charged weak interactions are the only interactions which allow a change of flavour between
quarks and leptons. This was first observed with the discovery of radioactive �� emissions by
Henri Becqueral in 1896 which was later realised to be described by the weak d ! u transition,

n ! pe�⌫̄e , (1.1)

where a neutron, with quark content udd, decays to a proton (uud) and in the process a electron
and its anti-neutrino are emitted. While the weak force only couples leptons to neutrinos within
generations, for quarks cross-generational couplings are possible. In addition, while the weak
coupling for leptons to neutrinos is universal across the generations, for quarks the couplings are
proportional to the elements of the Cabibbo-Kobayashi-Maskawa (CKM) matrix [2, 3],

V CKM
=

0

BBB@

Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

1

CCCA
. (1.2)

1

Introduction 2

This structure arises from the cross-generational couplings of quarks to the Higgs boson which
leads to a misalignment between the weak and mass eigenstates for quarks. The CKM matrix has
an almost diagonal structure as illustrated in Fig 1.1. The smallest and least known element is
|Vub| (see Fig 1.1) with |Vtb| : |Vcb| : |Vub| ⇡ O(1) : O(0.1) : O(0.01). The hierarchy between the
cross-generational couplings again presents another puzzling feature of the Standard Model. An
important characteristic of the CKM matrix is that it is unitary, this provides for an essential test
of the Standard Model.
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|ud|V
|us|V
|cs|V
|cb|V
|cd|V
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|ub|V

Figure 1.1: Illustration of the magnitudes of the CKM matrix elements, which displays an almost diagonal
structure (left). The matrix element |Vub| is the smallest of the CKM matrix elements and it
has the largest fractional uncertainty as shown on the right.

The CKM matrix may be parametrised by three real mixing angles and one complex phase.
The complex phase leads to CP violation, where C refers to a charge conjugation transformation,
Ce� ! e+, and P is a parity transformation, Pxi ! �xi. A violation of CP in the laws of nature
is required to explain the matter anti-matter asymmetry observed in the universe today [4]. Three
generations of quarks and leptons is the minimum number of generations for there to be CP

violation in the quark sector, which provides a potential explanation for the three generations of
nature. However, the CP violation observed in the quark sector is around nine orders of magnitude
too small to account for the observed matter-antimatter assymetry in the universe.

To test the unitarity of the CKM matrix and precisely determine the amount of CP violation in
the quark sector it is necessary to constrain the parameters of the CKM sector using measurements
of a number of observables including the magnitudes of CKM matrix elements. The large uncertainty
on |Vub| is one of the limiting factors in global fits for the four parameters of the CKM sector.
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nature. However, the CP violation observed in the quark sector is around nine orders of magnitude
too small to account for the observed matter-antimatter assymetry in the universe.
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the quark sector it is necessary to constrain the parameters of the CKM sector using measurements
of a number of observables including the magnitudes of CKM matrix elements. The large uncertainty
on |Vub| is one of the limiting factors in global fits for the four parameters of the CKM sector.
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Figure 1.3: The unitarity triangle representations of the conditions (ds) and (ut). The
complex side lengths are expressed in terms of VCKM elements and �.
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Figure 1.3: The unitarity triangle representations of the conditions (ds) and (ut). The
complex side lengths are expressed in terms of VCKM elements and �.

Figure 1: Representation in the complex plane of the nonsquashed triangles obtained from the o↵-diagonal
unitarity relations of the CKM matrix (Equation 8). (a) The three sides are rescaled by VcdV ⇤

cb. (b) The
three sides are scaled by VusV ⇤

cb.
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@
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(6)
The CKM matrix is complex; thus, CP violation is allowed if and only if ⌘̄ di↵ers from zero.
To lowest order, the Jarlskog parameter measuring CP violation in a convention-independent
manner [10],

JCP ⌘
��=

�
Vi↵Vj�V

⇤

i�
V ⇤

j↵

��� = �6A2⌘̄, (i 6= j,↵ 6= �) , (7)

is directly related to the CP -violating parameter ⌘̄, as expected.

2.2 The Unitarity Triangle

To represent the knowledge of the four CKM parameters, it is useful to exploit the unitarity
condition of the CKM matrix: VCKMV †

CKM = V †

CKMVCKM = I. This condition corresponds to
a set of 12 equations: six for diagonal terms and six for o↵-diagonal terms. In particular, the
equations for the o↵-diagonal terms can be represented as triangles in the complex plane, all
characterised by the same area JCP /2. Only two of these six triangles have sides of the same
order of magnitude, O(�3) (i.e., are not squashed):

VudV
⇤

ub| {z }
O(�3)

+VcdV
⇤

cb| {z }
O(�3)

+VtdV
⇤

tb| {z }
O(�3)

= 0, VudV
⇤

td| {z }
O(�3)

+VusV
⇤

ts| {z }
O(�3)

+VubV
⇤

tb| {z }
O(�3)

= 0. (8)

Figure 1 depicts these two triangles in the complex plane. In particular, the triangle defined by
the former equation and rescaled by a factor VcdV ⇤

cb
is commonly referred to as the unitarity

triangle (UT). The sides of the UT are given by

Ru ⌘

����
VudV ⇤

ub

VcdV ⇤

cb

���� =
p
⇢̄2 + ⌘̄2, Rt ⌘

����
VtdV ⇤

tb

VcdV ⇤

cb

���� =
q
(1� ⇢̄)2 + ⌘̄2. (9)

The parameters ⇢̄ and ⌘̄ are the coordinates in the complex plane of the nontrivial apex of the
UT, the others being (0, 0) and (1, 0). CP violation in the quark sector (⌘̄ 6= 0) is translated
into a nonflat UT. The angles of the UT are related to the CKM matrix elements as

3

Cabibbo angle

are related to the Yukawa coupling matrices as Mq = vY q/
p
2, where v is the vacuum expectation

value (the neutral component) of the Higgs field. At this stage, Mu and Md are general complex

matrices to be diagonalised using the singular value decomposition Mq = V †

qL
mqVqR, where

VL,R is unitary and mq is diagonal, real, and positive. The mass eigenstates are identified as
UL = VuLU 0

L
and UR = VuRU 0

R
, and similarly for D.

Expressing the interactions of quarks with gauge bosons in terms of mass eigenstates does
not modify the structure of the Lagrangian in the case of neutral gauge bosons, but it a↵ects
charged-current interactions between quarks and W±, described by the Lagrangian

LW± = �
g
p
2
U i�

µ
1� �5

2
(VCKM)

ij
DjW

+
µ + h.c., (2)

where g is the electroweak coupling constant and VCKM = V †

uL
VdL is the unitary CKM matrix:

VCKM =

0

@
Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

1

A . (3)

The CKM matrix induces flavour-changing transitions inside and between generations in the
charged sector at tree level (W± interaction). By contrast, there are no flavour-changing
transitions in the neutral sector at tree level (Z0 and photon interactions). The CKM matrix
stems from the Yukawa interaction between the Higgs boson and the fermions, and it originates
from the misalignment in flavour space of the up and down components of the SU(2)L quark
doublets of the SM (as there is no dynamical mechanism in the SM to enforce VuL = VdL).
The VCKM,ij CKM matrix elements (hereafter, Vij) represent the couplings between up-type
quarks Ui = (u, c, t) and down-type quarks Dj = (d, s, b). There is some arbitrariness in the
conventions used to define this matrix. In particular, the relative phases among the left-handed
quark fields can be redefined, reducing the number of real parameters describing this unitary
matrix from three moduli and six phases to three moduli and one phase [more generally, for N
generations, one has N(N � 1)/2 moduli and (N � 1)(N � 2)/2 phases]. Because CP conjugate
processes correspond to interaction terms in the Lagrangian related by Hermitian conjugation,
the presence of a phase, and thus the complex nature of the CKM matrix, may induce di↵erences
between rates of CP conjugate processes, leading to CP violation. This does not occur for only
two generations, where VCKM is real and parametrised by a single real parameter, the Cabibbo
angle.

According to experimental evidence, transitions within the same generation are characterised
by VCKM elements of O(1). Those between the first and second generations are suppressed by a
factor of O(10�1); those between the second and third generations by a factor of O(10�2); and
those between the first and third generations by a factor of O(10�3). This hierarchy can be
expressed by defining the four phase convention–independent quantities as follows:
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An alternative convention exists in the literature for the last two CKM parameters, corresponding
to

⇢+ i⌘ =
V ⇤

ub

VusV ⇤

cb

=

✓
1 +

1

2
�2

◆
(⇢̄+ i⌘̄) +O(�4). (5)

The CKM matrix can be expanded in powers of the small parameter � (which corresponds to
sin ✓C ' 0.22) [9], exploiting the unitarity of VCKM to highlight its hierarchical structure. This
expansion yields the following parametrisation of the CKM matrix up to O
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3 quark & lepton generations!
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Boson exchange

a-priori free from new 
physics

Why is it important to measure |Vub| and |Vcb|? 

CPV Kaon Mixing
The future?
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Inclusive |Vub | 

Exclusive |Vub | 

Inclusive |Vcb | 

Exclusive |Vcb | ‘Leptonic’ |Vub | 

pB ¼ pX þ pl þ pν;

p2
B ¼ m 2

B; p2
X ¼ m 2

X; p2
l ¼ m 2

l; p2
ν ¼ 0; ð10Þ

where m X is the mass of the final-state hadronic system.
Semileptonic decays for a fixed mass m X are described by

two kinematic quantities, which can be chosen to be the four-
momentum transfer squared q2 and the energy of the charged
lepton El:

q2 ¼ ðpl þpνÞ2 ¼ ðpB −pXÞ2; m 2
l ≤ q2 ≤ ðm B − m XÞ2;

El ¼
pBpl

m B
; m l ≤ El ≤

1

2m B
ðm 2

B − m 2
X þ m 2

lÞ: ð11Þ

The two variables are not independent; Fig. 2 shows the
boundaries of the allowed region in the q2-El plane for the
specific case of a B → D %lν̄ decay.
The various semileptonic B decay modes have spectra with

different end points. Figure 3 shows the lepton momentum
spectra for the different B → Xclν and B → Xulν decays,
where Xc and Xu denote hadronic final states containing a
charm quark and an up quark, respectively.

In the context of the heavy-quark expansion (see Sec. II.D)
it is convenient to introduce velocities instead of momenta.
For the case of heavy mesons like B and D ð%Þ mesons we
define

vB ¼ pB

m B
; vD ð%Þ ¼

pD ð%Þ

m D ð%Þ
; w ¼ vBvD ð%Þ ; ð12Þ

and the scalar product w of the two velocities is used instead of
the momentum transfer q2 ¼ m 2

B þ m 2
D ð%Þ − 2m Bm D ð%Þw. The

point w ¼ 1 corresponds to the maximum momentum transfer
to the leptons q2max ¼ ðm B − m D ð%Þ Þ2, while q2 ¼ 0 yields the
maximum value of w, thus

1 ≤ w ≤
m 2

B þ m 2
D ð%Þ

2m Bm D ð%Þ
: ð13Þ

Finally, for heavy-to-light transitions it is useful to define
light-cone components of the momenta. For a decay with the
kinematics given in Eq. (10), it is convenient to define

FIG. 2. Allowed kinematic region in the q2-El plane for B →
D %lν̄ decays. From Korner and Schuler, 1990.

(a)

(b)

FIG. 1. (a) A leptonic B decay (B → lν), and (b) a semileptonic
B decay (B → Xlν).

(a)

(b)

FIG. 3. Lepton momentum distributions for semileptonic B
decays: (a) B → Xclν and (b) B → Xulν. From Aubert et al.,
2006c.

Jochen Dingfelder and Thomas Mannel: Leptonic and semileptonic decays of B mesons

Rev. Mod. Phys., Vol. 88, No. 3, July–September 2016 035008-4

B-Meson decay constant

Form Factors

Operator Product Expansion

How do we measure |Vub| and |Vcb|? 

+ Fermi Motion / Shape Function

hB|Hµ|P i = (p+ p
0)µ f+
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FIG. 1. (a) A leptonic B decay (B → lν), and (b) a semileptonic
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FIG. 3. Lepton momentum distributions for semileptonic B
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Jochen Dingfelder and Thomas Mannel: Leptonic and semileptonic decays of B mesons

Rev. Mod. Phys., Vol. 88, No. 3, July–September 2016 035008-4

B-Meson decay constant

Form Factors

Measured
Branching Fraction

Prediction from
Theory but often also constrained 

from measured differential distributions

|Vqb| =

s
B(B̄ ! Xq ` ⌫̄`)

⌧ �(B̄ ! Xq ` ⌫̄`)

Theory from non-perturbative Methods:
* Lattice QCD (high q2)
* QCD Sum rules (low q2)

How do we measure |Vub| and |Vcb|? 



Current status of |Vub| and |Vcb|

inclusive, exclusive, leptonic
inclusive, exclusive

Florian Bernlochner 11th Annual Meeting of the Helmholtz Alliance “Physics at the Terascale”
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Overview: 2004 - 2017

Exclusive Approach Inclusive Approach

B̄ ! Xu ` ⌫̄`, B̄ ! Xc ` ⌫̄`B̄ ! ⇡ ` ⌫̄`, B̄ ! D(⇤) ` ⌫̄` ...
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arXiv:1612.07233

B-Factory 
 ‘legacy’

New HFAG Average of 
• Combines measured q2 bins into global 

Likelihood

• Systematics described with Nuisance 
parameters, allowing for correlated ‘pulls’

• Second fit to combined spectrum, lattice 
information and sum-rule predictions

• Simultaneously determine form factors 
and |Vub|

BGL Data+Lattice Data+ 
Lattice+LCSR

|Vub| x 103 3.68 ± 0.16 3.65 ± 0.14

BGL: Phys. Rev. Lett. 74, 4603 (1995)

Recent developments: Excl. |Vub |



Florian Bernlochner 11th Annual Meeting of the Helmholtz Alliance “Physics at the Terascale” 19

First measurement at a Hadron Collider 
• Uses                            & 

• q2 reconstructed up to two-fold ambiguity

Measure                                             using 
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Figure 2: Illustrating the method used to re-
duce the number of selected events from the
q2 region where lattice QCD has high uncer-
tainties. The e�ciency of simulated ⇤0

b ! pµ�⌫µ

candidates as a function of q2. For the case where
one q2 solution is required to be above 15GeV2/c4

(marked by the vertical line), there is still significant
e�ciency for signal below this value, whereas, when
both solutions have this requirement, only a small
amount of signal below 15GeV2/c4 is selected.

dates for the two decays are shown in Fig. 3. The
signal yields are determined from separate �2

fits to the mcorr distributions of the ⇤0
b! pµ�⌫µ

and ⇤0
b! (⇤+

c ! pK�⇡+)µ�⌫µ candidates. The
shapes of the signal and background components
are modelled using simulation, where the un-
certainties coming from the finite size of the
simulated samples are propagated in the fits.
The yields of all background components are
allowed to vary within uncertainties obtained as
described below.

For the fit to the mcorr distribution of the
⇤0

b! pµ�⌫µ candidates, many sources of back-
ground are accounted for. The largest of
these is the cross-feed from ⇤0

b ! ⇤+
c µ

�⌫µ

decays, where the ⇤+
c decays into a pro-

ton and other particles that are not recon-
structed. The amount of background arising
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Figure 3: Corrected mass fit used for de-
termining signal yields. Fits are made to
(top) ⇤0

b ! pµ�⌫µ and (bottom) ⇤0
b ! (⇤+

c !
pK�⇡+)µ�⌫µ candidates. The statistical uncer-
tainties arising from the finite size of the simulation
samples used to model the mass shapes are indi-
cated by open boxes while the data are represented
by the black points. The statistical uncertainty on
the data points is smaller than the marker size used.
The di↵erent signal and background components
appear in the same order in the fits and the legends.
There are no data above the nominal ⇤0

b mass due
to the removal of unphysical q2 solutions.

from these decay modes is estimated by fully
reconstructing two ⇤+

c decays in the data. The
background where the additional particles in-
clude charged particles originating directly from

4
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p
�+
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Figure 1: Diagram illustrating the topol-
ogy for the (top) signal and (bottom) back-
ground decays. The ⇤0

b baryon travels about 1 cm
on average before decaying; its flight direction is
indicated in the diagram. In the ⇤0

b! pµ�⌫µ signal
case, the only other particles present are typically
reconstructed far away from the signal, which are
shown as grey arrows. For the background from ⇤+

c

decays, there are particles which are reconstructed
in close proximity to the signal and which are indi-
cated as dotted arrows.

⇤0
b ! pµ�⌫µ and ⇤0

b ! (⇤+
c ! pK�⇡+)µ�⌫µ

decay candidates, where the pion and kaon are
ignored in the calculation of the BDT response
for the ⇤0

b! (⇤+
c ! pK�⇡+)µ�⌫µ case.

The ⇤0
b mass is reconstructed using the so-

called corrected mass [33], defined as

mcorr =
q
m2

hµ + p2? + p?,

where mhµ is the visible mass of the hµ pair and
p? is the momentum of the hµ pair transverse

to the ⇤0
b flight direction, where h represents

either the proton or ⇤+
c candidate. The flight

direction is measured using the PV and ⇤0
b vertex

positions. The uncertainties on the PV and
the ⇤0

b vertex are estimated for each candidate
and propagated to the uncertainty on mcorr; the
dominant contribution is from the uncertainty
in the ⇤0

b vertex.
Candidates with an uncertainty of less than

100MeV/c2 on the corrected mass are selected
for the ⇤0

b! pµ�⌫µ decay. This selects only 23%
of the signal; however, the separation between
signal and background for these candidates is
significantly improved and the selection thus re-
duces the dependence on background modelling.

The LQCD form-factors that are required to
calculate |Vub| are most precise in the kinematic
region where q2, the invariant mass squared of
the muon and the neutrino in the decay, is high.
The neutrino is not reconstructed, but q2 can
still be determined using the ⇤0

b flight direction
and the ⇤0

b mass, but only up to a two-fold
ambiguity. The correct solution has a resolu-
tion of about 1GeV2/c4, while the wrong solu-
tion has a resolution of 4GeV2/c4. To avoid
influence on the measurement by the large un-
certainty in form factors at low q2, both so-
lutions are required to exceed 15GeV2/c4 for
the ⇤0

b ! pµ�⌫µ decay and 7GeV2/c4 for the
⇤0

b ! (⇤+
c ! pK�⇡+)µ�⌫µ decay. Simulation

shows that only 2% of ⇤0
b! pµ�⌫µ decays and

5% of ⇤0
b! ⇤+

c µ
�⌫µ decays with q2 values below

the cut values pass the selection requirements.
The e↵ect of this can be seen in Fig. 2, where the
e�ciency for signal below 15GeV2/c4 is reduced
significantly if requirements are applied on both
solutions. It is also possible that both solutions
are imaginary due to the limited detector resolu-
tion. Candidates of this type are rejected. The
overall q2 selection has an e�ciency of 38% for
⇤0

b! pµ�⌫µ and 39% for ⇤0
b! ⇤+

c µ
�⌫µ decays

in their respective high-q2 regions.
The mass distributions of the signal candi-
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of the signal; however, the separation between
signal and background for these candidates is
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duces the dependence on background modelling.
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still be determined using the ⇤0
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and the ⇤0

b mass, but only up to a two-fold
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tion of about 1GeV2/c4, while the wrong solu-
tion has a resolution of 4GeV2/c4. To avoid
influence on the measurement by the large un-
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lutions are required to exceed 15GeV2/c4 for
the ⇤0

b ! pµ�⌫µ decay and 7GeV2/c4 for the
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solutions. It is also possible that both solutions
are imaginary due to the limited detector resolu-
tion. Candidates of this type are rejected. The
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Figure 2: Illustrating the method used to re-
duce the number of selected events from the
q2 region where lattice QCD has high uncer-
tainties. The e�ciency of simulated ⇤0

b ! pµ�⌫µ

candidates as a function of q2. For the case where
one q2 solution is required to be above 15GeV2/c4

(marked by the vertical line), there is still significant
e�ciency for signal below this value, whereas, when
both solutions have this requirement, only a small
amount of signal below 15GeV2/c4 is selected.

dates for the two decays are shown in Fig. 3. The
signal yields are determined from separate �2

fits to the mcorr distributions of the ⇤0
b! pµ�⌫µ

and ⇤0
b! (⇤+

c ! pK�⇡+)µ�⌫µ candidates. The
shapes of the signal and background components
are modelled using simulation, where the un-
certainties coming from the finite size of the
simulated samples are propagated in the fits.
The yields of all background components are
allowed to vary within uncertainties obtained as
described below.

For the fit to the mcorr distribution of the
⇤0

b! pµ�⌫µ candidates, many sources of back-
ground are accounted for. The largest of
these is the cross-feed from ⇤0

b ! ⇤+
c µ

�⌫µ

decays, where the ⇤+
c decays into a pro-

ton and other particles that are not recon-
structed. The amount of background arising
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Figure 3: Corrected mass fit used for de-
termining signal yields. Fits are made to
(top) ⇤0

b ! pµ�⌫µ and (bottom) ⇤0
b ! (⇤+

c !
pK�⇡+)µ�⌫µ candidates. The statistical uncer-
tainties arising from the finite size of the simulation
samples used to model the mass shapes are indi-
cated by open boxes while the data are represented
by the black points. The statistical uncertainty on
the data points is smaller than the marker size used.
The di↵erent signal and background components
appear in the same order in the fits and the legends.
There are no data above the nominal ⇤0

b mass due
to the removal of unphysical q2 solutions.

from these decay modes is estimated by fully
reconstructing two ⇤+

c decays in the data. The
background where the additional particles in-
clude charged particles originating directly from

4

⇤0
b ! pµ�⌫µ and ⇤0

b ! (⇤+
c ! pK�⇡+)µ�⌫µ

candidates. The ratio of e�ciencies is 3.52±0.20,
with the sources of the uncertainty described be-
low.

Systematic uncertainties associated with the
measurement are summarised in Table 1. The
largest uncertainty originates from the ⇤+

c !
pK�⇡+ branching fraction, which is taken from
Ref. [35]. This is followed by the uncertainty
on the trigger response, which is due to the
statistical uncertainty of the calibration sam-
ple. Other contributions come from the track-
ing e�ciency, which is due to possible di↵er-
ences between the data and simulation in the
probability of interactions with the material
of the detector for the kaon and pion in the
⇤0

b! (⇤+
c ! pK�⇡+)µ�⌫µ decay. Another sys-

tematic uncertainty is assigned due to the lim-
ited knowledge of the momentum distribution
for the ⇤+

c ! pK�⇡+ decay products. Uncer-
tainties related to the background composition
are included in the statistical uncertainty for
the signal yield through the use of nuisance pa-
rameters in the fit. The exception to this is the
uncertainty on the ⇤0

b ! N⇤µ�⌫µ mass shapes
due to the limited knowledge of the form factors
and widths of each state, which is estimated by
generating pseudoexperiments and assessing the
impact on the signal yield.

Smaller uncertainties are assigned for the
following e↵ects: the uncertainty in the ⇤0

b life-
time; di↵erences in data and simulation in the
isolation BDT response; di↵erences in the rel-
ative e�ciency and q2 migration due to form
factor uncertainties for both signal and normali-
sation channels; corrections to the ⇤0

b kinematic
properties; the disagreement in the q2 migra-
tion between data and simulation; and the finite
size of the PID calibration samples. The to-
tal fractional systematic uncertainty is +7.8

�8.2%,
where the individual uncertainties are added in
quadrature. The small impact of the form factor
uncertainties means that the measured ratio of

Table 1: Summary of systematic uncertainties.
The table shows the relative systematic uncertainty
on the ratio of the ⇤0

b! pµ�⌫µ and ⇤0
b! ⇤+

c µ�⌫µ

branching fractions broken into its individual con-
tributions. The total is obtained by adding them in
quadrature. Uncertainties on the background levels
are not listed here as they are incorporated into the
fits.

Source Relative uncertainty (%)

B(⇤+
c ! pK+⇡�) +4.7

�5.3

Trigger 3.2
Tracking 3.0
⇤+

c selection e�ciency 3.0
⇤0

b ! N⇤µ�⌫µ shapes 2.3
⇤0

b lifetime 1.5
Isolation 1.4
Form factor 1.0
⇤0

b kinematics 0.5
q2 migration 0.4
PID 0.2

Total +7.8
�8.2

branching fractions can safely be considered in-
dependent of the theoretical input at the current
level of precision.

From the ratio of yields and their determined
e�ciencies, the ratio of branching fractions of
⇤0

b! pµ�⌫µ to ⇤0
b! ⇤+

c µ
�⌫µ in the selected q2

regions is

B(⇤0
b! pµ�⌫µ)q2>15GeV/c2

B(⇤0
b! ⇤+

c µ
�⌫µ)q2>7GeV/c2

=

(1.00± 0.04± 0.08)⇥ 10�2 ,

where the first uncertainty is statistical and
the second is systematic. Using Eq. 1 with
RFF = 0.68 ± 0.07, computed in Ref. [20] for
the restricted q2 regions, the measurement

|Vub|
|Vcb|

= 0.083± 0.004± 0.004 ,

is obtained. The first uncertainty arises from
the experimental measurement and the second is

6

pμ- or Λcμ-pair pTpμ- or Λcμ-pair mass

q. q2 = (p⇤b � pp)
2Recent developments: Excl. |Vub |
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q. q2 = (p⇤b � pp)
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Table 84: Covariance matrix for the combined fit to data, LQCD and LCSR results.

Parameter |Vub| b+1 b+2 b+3
|Vub| 2.088 ⇥ 10�8

�1.291 ⇥ 10�6
�1.808 ⇥ 10�6 7.274 ⇥ 10�6

b+1 �1.291 ⇥ 10�6 1.377 ⇥ 10�4 7.922 ⇥ 10�5
�8.681 ⇥ 10�4

b+2 �1.808 ⇥ 10�6 7.922 ⇥ 10�5 1.068 ⇥ 10�3
�2.873 ⇥ 10�3

b+3 7.274 ⇥ 10�6
�8.681 ⇥ 10�4

�2.873 ⇥ 10�3 1.588 ⇥ 10�2

R =
B(⇤b ! pµ⌫)q2>15 GeV 2

B(⇤b ! ⇤cµ⌫)q2>7 GeV 2
= (1.00 ± 0.04 ± 0.08) ⇥ 10�2. (204)

The ratio R is proportional to (|Vub|/|Vcb|)2 through a factor that depends on the form factors
of ⇤b ! p and ⇤b ! ⇤c transitions that have to be computed with non perturbative methods,
like lattice QCD. The measured ratio R depends on the branching fraction of the ⇤c in the pK⇡
decay mode used to reconstruct the normalization decay. The uncertainty on B(⇤c ! pK⇡)
is the largest source of systematics on R. Using the recent HFAG average B(⇤c ! pK⇡) =
(6.46 ± 0.24)%, that includes the recent BESIII measurements, the rescaled value for R is

R = (0.95 ± 0.04 ± 0.07) ⇥ 10�2 (205)

The lattice QCD prediction [514] of the form factors in the restricted q2 region considered,
allows to extract |Vub|/|Vcb|,

|Vub|

|Vcb|
= 0.080 ± 0.004Exp. ± 0.004F.F. (206)

where the first uncertainty is the total experimental error and the second one is due to the
knowledge of the form factors. A combined fit for |Vub| and |Vcb| that includes the constraint
from LHCb, and the exclusive determination of |Vub| and |Vcb| only, gives the following results

|Vub| = (3.55 ± 0.12) ⇥ 10�3 (207)
|Vcb| = (39.16 ± 0.58) ⇥ 10�3 (208)

⇢(|Vub||, |Vcb|) = 0.14 (209)

where the uncertainties are considered uncorrelated. The �2 of the fit is 5.2 for 2 d.o.f corre-
sponding to a P (�2) of 7.4%. The fit result is shown in Fig. 60, where both the 1-� and the 68%
C.L. contours are reported. The |Vub|/|Vcb| value extracted from R is more compatible with
the exclusive determinations of |Vub|. Another recent calculation, by Faustov and Galkin [515],
based on a relativistic quark model, gives a value of |Vub|/|Vcb| closer to the inclusive determi-
nations. More calculations of the relevant form factors for ⇤b ! p`⌫ and ⇤b ! ⇤c`⌫ are highly
desirable.
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b ! pµ�⌫µ and ⇤0

b ! (⇤+
c ! pK�⇡+)µ�⌫µ

candidates. The ratio of e�ciencies is 3.52±0.20,
with the sources of the uncertainty described be-
low.

Systematic uncertainties associated with the
measurement are summarised in Table 1. The
largest uncertainty originates from the ⇤+

c !
pK�⇡+ branching fraction, which is taken from
Ref. [35]. This is followed by the uncertainty
on the trigger response, which is due to the
statistical uncertainty of the calibration sam-
ple. Other contributions come from the track-
ing e�ciency, which is due to possible di↵er-
ences between the data and simulation in the
probability of interactions with the material
of the detector for the kaon and pion in the
⇤0

b! (⇤+
c ! pK�⇡+)µ�⌫µ decay. Another sys-

tematic uncertainty is assigned due to the lim-
ited knowledge of the momentum distribution
for the ⇤+

c ! pK�⇡+ decay products. Uncer-
tainties related to the background composition
are included in the statistical uncertainty for
the signal yield through the use of nuisance pa-
rameters in the fit. The exception to this is the
uncertainty on the ⇤0

b ! N⇤µ�⌫µ mass shapes
due to the limited knowledge of the form factors
and widths of each state, which is estimated by
generating pseudoexperiments and assessing the
impact on the signal yield.

Smaller uncertainties are assigned for the
following e↵ects: the uncertainty in the ⇤0

b life-
time; di↵erences in data and simulation in the
isolation BDT response; di↵erences in the rel-
ative e�ciency and q2 migration due to form
factor uncertainties for both signal and normali-
sation channels; corrections to the ⇤0

b kinematic
properties; the disagreement in the q2 migra-
tion between data and simulation; and the finite
size of the PID calibration samples. The to-
tal fractional systematic uncertainty is +7.8

�8.2%,
where the individual uncertainties are added in
quadrature. The small impact of the form factor
uncertainties means that the measured ratio of

Table 1: Summary of systematic uncertainties.
The table shows the relative systematic uncertainty
on the ratio of the ⇤0

b! pµ�⌫µ and ⇤0
b! ⇤+

c µ�⌫µ

branching fractions broken into its individual con-
tributions. The total is obtained by adding them in
quadrature. Uncertainties on the background levels
are not listed here as they are incorporated into the
fits.

Source Relative uncertainty (%)

B(⇤+
c ! pK+⇡�) +4.7

�5.3

Trigger 3.2
Tracking 3.0
⇤+

c selection e�ciency 3.0
⇤0

b ! N⇤µ�⌫µ shapes 2.3
⇤0

b lifetime 1.5
Isolation 1.4
Form factor 1.0
⇤0

b kinematics 0.5
q2 migration 0.4
PID 0.2

Total +7.8
�8.2

branching fractions can safely be considered in-
dependent of the theoretical input at the current
level of precision.

From the ratio of yields and their determined
e�ciencies, the ratio of branching fractions of
⇤0

b! pµ�⌫µ to ⇤0
b! ⇤+

c µ
�⌫µ in the selected q2

regions is

B(⇤0
b! pµ�⌫µ)q2>15GeV/c2

B(⇤0
b! ⇤+

c µ
�⌫µ)q2>7GeV/c2

=

(1.00± 0.04± 0.08)⇥ 10�2 ,

where the first uncertainty is statistical and
the second is systematic. Using Eq. 1 with
RFF = 0.68 ± 0.07, computed in Ref. [20] for
the restricted q2 regions, the measurement

|Vub|
|Vcb|

= 0.083± 0.004± 0.004 ,

is obtained. The first uncertainty arises from
the experimental measurement and the second is
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Includes updated Λc → pK𝝅 BF from HFAG/BES III
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|Vub| x 103 3.11 ± 0.20 3.65 ± 0.14

Using Lattice results from Phys. Rev. D 92, 034503 (2015)

can convert this into |Vub|/|Vcb|
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candidates. The ratio of e�ciencies is 3.52±0.20,
with the sources of the uncertainty described be-
low.

Systematic uncertainties associated with the
measurement are summarised in Table 1. The
largest uncertainty originates from the ⇤+

c !
pK�⇡+ branching fraction, which is taken from
Ref. [35]. This is followed by the uncertainty
on the trigger response, which is due to the
statistical uncertainty of the calibration sam-
ple. Other contributions come from the track-
ing e�ciency, which is due to possible di↵er-
ences between the data and simulation in the
probability of interactions with the material
of the detector for the kaon and pion in the
⇤0

b! (⇤+
c ! pK�⇡+)µ�⌫µ decay. Another sys-

tematic uncertainty is assigned due to the lim-
ited knowledge of the momentum distribution
for the ⇤+

c ! pK�⇡+ decay products. Uncer-
tainties related to the background composition
are included in the statistical uncertainty for
the signal yield through the use of nuisance pa-
rameters in the fit. The exception to this is the
uncertainty on the ⇤0

b ! N⇤µ�⌫µ mass shapes
due to the limited knowledge of the form factors
and widths of each state, which is estimated by
generating pseudoexperiments and assessing the
impact on the signal yield.

Smaller uncertainties are assigned for the
following e↵ects: the uncertainty in the ⇤0

b life-
time; di↵erences in data and simulation in the
isolation BDT response; di↵erences in the rel-
ative e�ciency and q2 migration due to form
factor uncertainties for both signal and normali-
sation channels; corrections to the ⇤0

b kinematic
properties; the disagreement in the q2 migra-
tion between data and simulation; and the finite
size of the PID calibration samples. The to-
tal fractional systematic uncertainty is +7.8

�8.2%,
where the individual uncertainties are added in
quadrature. The small impact of the form factor
uncertainties means that the measured ratio of

Table 1: Summary of systematic uncertainties.
The table shows the relative systematic uncertainty
on the ratio of the ⇤0

b! pµ�⌫µ and ⇤0
b! ⇤+

c µ�⌫µ

branching fractions broken into its individual con-
tributions. The total is obtained by adding them in
quadrature. Uncertainties on the background levels
are not listed here as they are incorporated into the
fits.

Source Relative uncertainty (%)

B(⇤+
c ! pK+⇡�) +4.7

�5.3

Trigger 3.2
Tracking 3.0
⇤+

c selection e�ciency 3.0
⇤0

b ! N⇤µ�⌫µ shapes 2.3
⇤0

b lifetime 1.5
Isolation 1.4
Form factor 1.0
⇤0

b kinematics 0.5
q2 migration 0.4
PID 0.2

Total +7.8
�8.2

branching fractions can safely be considered in-
dependent of the theoretical input at the current
level of precision.

From the ratio of yields and their determined
e�ciencies, the ratio of branching fractions of
⇤0

b! pµ�⌫µ to ⇤0
b! ⇤+

c µ
�⌫µ in the selected q2

regions is

B(⇤0
b! pµ�⌫µ)q2>15GeV/c2

B(⇤0
b! ⇤+

c µ
�⌫µ)q2>7GeV/c2

=

(1.00± 0.04± 0.08)⇥ 10�2 ,

where the first uncertainty is statistical and
the second is systematic. Using Eq. 1 with
RFF = 0.68 ± 0.07, computed in Ref. [20] for
the restricted q2 regions, the measurement

|Vub|
|Vcb|

= 0.083± 0.004± 0.004 ,

is obtained. The first uncertainty arises from
the experimental measurement and the second is
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Table 84: Covariance matrix for the combined fit to data, LQCD and LCSR results.

Parameter |Vub| b+1 b+2 b+3
|Vub| 2.088 ⇥ 10�8

�1.291 ⇥ 10�6
�1.808 ⇥ 10�6 7.274 ⇥ 10�6

b+1 �1.291 ⇥ 10�6 1.377 ⇥ 10�4 7.922 ⇥ 10�5
�8.681 ⇥ 10�4

b+2 �1.808 ⇥ 10�6 7.922 ⇥ 10�5 1.068 ⇥ 10�3
�2.873 ⇥ 10�3

b+3 7.274 ⇥ 10�6
�8.681 ⇥ 10�4

�2.873 ⇥ 10�3 1.588 ⇥ 10�2

R =
B(⇤b ! pµ⌫)q2>15 GeV 2

B(⇤b ! ⇤cµ⌫)q2>7 GeV 2
= (1.00 ± 0.04 ± 0.08) ⇥ 10�2. (204)

The ratio R is proportional to (|Vub|/|Vcb|)2 through a factor that depends on the form factors
of ⇤b ! p and ⇤b ! ⇤c transitions that have to be computed with non perturbative methods,
like lattice QCD. The measured ratio R depends on the branching fraction of the ⇤c in the pK⇡
decay mode used to reconstruct the normalization decay. The uncertainty on B(⇤c ! pK⇡)
is the largest source of systematics on R. Using the recent HFAG average B(⇤c ! pK⇡) =
(6.46 ± 0.24)%, that includes the recent BESIII measurements, the rescaled value for R is

R = (0.95 ± 0.04 ± 0.07) ⇥ 10�2 (205)

The lattice QCD prediction [514] of the form factors in the restricted q2 region considered,
allows to extract |Vub|/|Vcb|,

|Vub|

|Vcb|
= 0.080 ± 0.004Exp. ± 0.004F.F. (206)

where the first uncertainty is the total experimental error and the second one is due to the
knowledge of the form factors. A combined fit for |Vub| and |Vcb| that includes the constraint
from LHCb, and the exclusive determination of |Vub| and |Vcb| only, gives the following results

|Vub| = (3.55 ± 0.12) ⇥ 10�3 (207)
|Vcb| = (39.16 ± 0.58) ⇥ 10�3 (208)

⇢(|Vub||, |Vcb|) = 0.14 (209)

where the uncertainties are considered uncorrelated. The �2 of the fit is 5.2 for 2 d.o.f corre-
sponding to a P (�2) of 7.4%. The fit result is shown in Fig. 60, where both the 1-� and the 68%
C.L. contours are reported. The |Vub|/|Vcb| value extracted from R is more compatible with
the exclusive determinations of |Vub|. Another recent calculation, by Faustov and Galkin [515],
based on a relativistic quark model, gives a value of |Vub|/|Vcb| closer to the inclusive determi-
nations. More calculations of the relevant form factors for ⇤b ! p`⌫ and ⇤b ! ⇤c`⌫ are highly
desirable.
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due to the uncertainty in the LQCD prediction.
Finally, using the world average |Vcb| = (39.5±
0.8)⇥10�3 measured using exclusive decays [14],
|Vub| is measured as

|Vub| = (3.27± 0.15± 0.16± 0.06)⇥ 10�3 ,

where the first uncertainty is due to the exper-
imental measurement, the second arises from
the uncertainty in the LQCD prediction and
the third from the normalisation to |Vcb|. As
the measurement of |Vub|/|Vcb| already depends
on LQCD calculations of the form factors it
makes sense to normalise to the |Vcb| exclusive
world average and not include the inclusive |Vcb|
measurements. The experimental uncertainty is
dominated by systematic e↵ects, most of which
will be improved with additional data by a reduc-
tion of the statistical uncertainty of the control
samples.

The measured ratio of branching frac-
tions can be extrapolated to the full q2 re-
gion using |Vcb| and the form factor pre-
dictions [20], resulting in a measurement of
B(⇤0

b! pµ�⌫µ) = (4.1± 1.0)⇥ 10�4, where the
uncertainty is dominated by knowledge of the
form factors at low q2.

The determination of |Vub| from the mea-
sured ratio of branching fractions depends on
the size of a possible right-handed coupling [36].
This can clearly be seen in Fig. 4, which shows
the experimental constraints on the left-handed
coupling, |V L

ub| and the fractional right-handed
coupling added to the SM, ✏R, for di↵erent mea-
surements. The LHCb result presented here is
compared to the world averages of the inclusive
and exclusive measurements. Unlike the case for
the pion in B0 ! ⇡+`�⌫ and B� ! ⇡0`�⌫ de-
cays, the spin of the proton is non-zero, allowing
an axial-vector current, which gives a di↵erent
sensitivity to ✏R. The overlap of the bands from
the previous measurements suggested a signifi-
cant right-handed coupling but the inclusion of
the LHCb |Vub| measurement does not support

Rε
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Figure 4: Experimental constraints on the
left-handed coupling, |V L

ub| and the fractional
right-handed coupling, ✏R. While the overlap
of the 68% confidence level bands for the inclu-
sive [14] and exclusive [7] world averages of past
measurements suggested a right handed coupling
of significant magnitude, the inclusion of the LHCb
|Vub| measurement does not support this.

that.
In summary, a measurement of the ratio of

|Vub| to |Vcb| is performed using the exclusive
decay modes ⇤0

b ! pµ�⌫µ and ⇤0
b ! ⇤+

c µ
�⌫µ.

Using a previously measured value of |Vcb|, |Vub|
is determined precisely. The |Vub| measurement
is in agreement with the exclusively measured
world average from Ref. [7], but disagrees with
the inclusive measurement [14] at a significance
level of 3.5 standard deviations. The measure-
ment will have a significant impact on the global
fits to the parameters of the CKM matrix.

7

21

q. q2 = (p⇤b � pp)
2Recent developments: Excl. |Vub |

R = (0.95 ± 0.04 ± 0.07) ⇥ 10�2B(⇤0
b! pµ�⌫µ)q2>15GeV/c2

B(⇤0
b! ⇤+

c µ
�⌫µ)q2>7GeV/c2

�Includes updated Λc → pK𝝅 BF from HFAG/BES III

Using Lattice results from Phys. Rev. D 92, 034503 (2015)

can convert this into |Vub|/|Vcb|

Source Relative uncertainty (%)

B(⇤+
c ! pK+⇡�) +4.7

�5.3

Trigger 3.2
Tracking 3.0
⇤+

c selection e�ciency 3.0
⇤0

b ! N⇤µ�⌫µ shapes 2.3
⇤0

b lifetime 1.5
Isolation 1.4
Form factor 1.0
⇤0

b kinematics 0.5
q2 migration 0.4
PID 0.2

Total +7.8
�8.2

+
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|Vub|

|Vcb|
= 0.080 ± 0.004Exp. ± 0.004F.F.
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Belle-Conf 1612, 1702.01521
Phys. Rev. D 93, 032006 (2016)
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FIG. 5. Fit to the measured ��/�w spectrum of the decay B ! D`⌫`, assuming the CLN form-factor parameterization
(Eq. (13)). The points with error bars are the data. Their respective uncertainties are shown by the vertical error bars; the
bin widths are shown by the horizontal bars. The solid curve corresponds to the result of the fit. The shaded area around this
curve indicates the uncertainty in the coe�cients of the CLN parameters.

between them is expected to be small since the collaborations use di↵erent heavy-quark methods, lattice NRQCD
[33] for HPQCD and the Fermilab method [34] for FNAL/MILC. We therefore assume the two LQCD results to be
uncorrelated in our fits.

Note that LQCD yields results for both the f+ and f0 form factors while the experimental distribution ��i/�w
depends on f+ only. Using the kinematic constraint from Eq. 7, we can include the LQCD results for f0 into the fit,
allowing us to better constrain f+. Following Ref. [15], we implement this constraint by expressing a0,0 in terms of
the other a+,n and a0,n coe�cients. FNAL/MILC obtains values for both the f+ and the f0 form factors at w values
of 1, 1.08, and 1.16. The full covariance matrix for these six measurements is available in Table VII of Ref. [15].

The form factors determined by HPQCD are based on a di↵erent form factor parameterization by Bourrely, Caprini
and Lellouch (BCL), see Ref. [35]. BCL uses an expansion in a conformal mapping variable to o↵er perturbative QCD
scaling also at higher q2 values. The formulae and pole choices used by HPQCD can be seen in Eqs. A1 to A6 of

Ref. [32]. As a result of their fit they provide the coe�cients a(0)
0

, a(0)
1

, a(0)
2

, a(+)

0
, a(+)

1
, and a(+)

2
, together with their

6⇥6 covariance matrix (Table VII of Ref. [32]). To be able to include these results in the same fit as the FNAL/MILC
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of the unfolded decay rates are shown.
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• Reconstruct w ~ q2 and projections of D* decay angles

• Largest Systematic: hadronic tagging calibration (~3-4% on BF)
• Full correlations of D* decay angles and w w
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Belle-Conf 1612, 1702.01521
Phys. Rev. D 93, 032006 (2016)
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bin widths are shown by the horizontal bars. The solid curve corresponds to the result of the fit. The shaded area around this
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between them is expected to be small since the collaborations use di↵erent heavy-quark methods, lattice NRQCD
[33] for HPQCD and the Fermilab method [34] for FNAL/MILC. We therefore assume the two LQCD results to be
uncorrelated in our fits.

Note that LQCD yields results for both the f+ and f0 form factors while the experimental distribution ��i/�w
depends on f+ only. Using the kinematic constraint from Eq. 7, we can include the LQCD results for f0 into the fit,
allowing us to better constrain f+. Following Ref. [15], we implement this constraint by expressing a0,0 in terms of
the other a+,n and a0,n coe�cients. FNAL/MILC obtains values for both the f+ and the f0 form factors at w values
of 1, 1.08, and 1.16. The full covariance matrix for these six measurements is available in Table VII of Ref. [15].

The form factors determined by HPQCD are based on a di↵erent form factor parameterization by Bourrely, Caprini
and Lellouch (BCL), see Ref. [35]. BCL uses an expansion in a conformal mapping variable to o↵er perturbative QCD
scaling also at higher q2 values. The formulae and pole choices used by HPQCD can be seen in Eqs. A1 to A6 of

Ref. [32]. As a result of their fit they provide the coe�cients a(0)
0

, a(0)
1

, a(0)
2

, a(+)

0
, a(+)

1
, and a(+)

2
, together with their

6⇥6 covariance matrix (Table VII of Ref. [32]). To be able to include these results in the same fit as the FNAL/MILC
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‣ Both measurements provide unfolded decay distributions

CLN D* D Inclusive

|Vcb| x 103 37.4 ± 1.3 39.9 ± 1.3 42.0 ± 0.6
~1.4 σ

CLN: Phys. Lett. B380, 376 (1996)

BGL D
|Vcb| x 103 40.8 ± 1.1

BGL: Phys. Rev. Lett. 74, 4603 (1995)

!
See also 

Phys. Rev. D 94, 094008 (2016)

w
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D* unfolded distributions analysed by 
three groups

arXiv:1703.05330

CLN D*

|Vcb| x 103 38.2 ± 1.5

BGL D*

|Vcb| x 103 41.9 ± 1.9
BGL: Phys. Rev. Lett. 74, 4603 (1995)

CLN: Phys. Lett. B380, 376 (1996)

Includes additional measurement & 
beyond zero recoil lattice constraints

From unfolded data, slightly higher than 
‘folded’ result of previous slide

arXiv:1703.06124,1703.08170

BLPR D + D*

|Vcb| x 103 39.3 ± 1.0

Both |Vcb | values are correlated, 
so how significant is this shift? 

𝝆 = ?
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D* unfolded distributions analysed by 
three groups

arXiv:1703.05330

CLN D*

|Vcb| x 103 38.2 ± 1.5

BGL D*

|Vcb| x 103 41.9 ± 1.9
BGL: Phys. Rev. Lett. 74, 4603 (1995)

CLN: Phys. Lett. B380, 376 (1996)

Includes additional measurement & 
beyond zero recoil lattice constraints

From unfolded data, slightly higher than 
‘folded’ result of previous slide

arXiv:1703.06124,1703.08170

BLPR D + D*

|Vcb| x 103 39.3 ± 1.0
arXiv:1708.07134

2

form factors BGL CLN CLNnoR noHQS

axial / ✏⇤µ b0, b1 hA1(1), ⇢2D⇤ hA1(1), ⇢2D⇤ hA1(1), ⇢2D⇤ , cD⇤

vector a0, a1

⇢
R1(1), R2(1)

⇢
R1(1), R0

1(1)

R2(1), R0
2(1)

⇢
R1(1), R0

1(1)

R2(1), R0
2(1)F c1, c2

TABLE I. The fit parameters in the BGL, CLN, CLNnoR, and noHQS fits, and their relationships with the form factors.

which satisfy R1,2(w) = 1 + O(⇤QCD/mc,b, ↵s) in the
mc,b � ⇤QCD limit, and rD⇤ = mD⇤/mB .

The B ! D⇤`⌫̄ decay rate is given by

d�

dw
=

G2
F |Vcb|

2 m5
B

48⇡3
(w2

� 1)1/2 (w + 1)2 r3D⇤(1� rD⇤)2

⇥


1 +

4w

w + 1

1� 2wrD⇤ + r2D⇤

(1� rD⇤)2

�
F(w)2 , (4)

and the expression of F(w) in terms of the form factors
defined in Eq. (2) is standard in the literature [27]. In
the heavy quark limit, F(w) = ⇠(w). We further denote

⇢2D⇤ = �
1

hA1(1)

dhA1(w)

dw

����
w=1

, (5)

which is a physical fit parameter in the CLN approach,
and is a derived quantity in the other fits.

III. NEW FITS, LATTICE QCD, AND THEIR
TENSIONS

The constraints built into the CLN fit can be relaxed
by ignoring the QCD sum rule inputs and the condition
R1,2(w) = 1 + O(⇤QCD/mc,b, ↵s) following from heavy
quark symmetry. (Ref. [2] showed that only ignoring the
QCD sum rule inputs, and using only w = 1 lattice QCD
data, leaves |Vcb| = (38.8± 1.2)⇥ 10�3.) Thus, we write

R1(w) = R1(1) + (w � 1)R0
1(1) ,

R2(w) = R2(1) + (w � 1)R0
2(1) , (6)

and treat R1,2(1) and R0
1,2(1) as fit parameters. We refer

to this fit as “CLNnoR”. It has the same number of fit
parameters as BGL, and allows O(1) heavy quark sym-
metry violation, but the constraints on the form factors
are nevertheless somewhat di↵erent than in BGL.

While this CLNnoR fit is a simple modification of the
CLN fit widely used by BaBar and Belle, it still re-
lies on heavy quark symmetry and model-dependent in-
put on subleading Isgur-Wise functions. The reason is
that both CLN and CLNnoR use a cubic polynomial in
z = (

p
w + 1 �

p
2)/(

p
w + 1 +

p
2) to parametrize the

form factor hA1 , with its four coe�cients determined by
two parameters, hA1(1) and ⇢2D⇤ , derived from unitarity
constraints on the B ! D form factor. Therefore, we
also consider a “noHQS” scenario, parametrizing hA1 by
a quadratic polynomial in z, with unconstrained coe�-
cients,

hA1(w) = hA1(1)
⇥
1� 8⇢2D⇤z + (53. cD⇤ � 15.)z2

⇤
, (7)

CLN CLNnoR noHQS BGL

|Vcb|⇥10
3

38.2± 1.5 41.5± 1.9 41.8± 1.9 41.5± 1.8

⇢2D⇤ 1.17± 0.15 1.6± 0.2 1.8± 0.4 1.54± 0.06

cD⇤ ⇢2D⇤ ⇢2D⇤ 2.4± 1.6 fixed: 15./53.

R1(1) 1.39± 0.09 0.36± 0.35 0.48± 0.48 0.45± 0.28

R2(1) 0.91± 0.08 1.10± 0.19 0.79± 0.36 1.00± 0.18

R0
1(1) fixed: �0.12 5.1± 1.8 4.3± 2.6 4.2± 1.2

R0
2(1) fixed: 0.11 �0.89± 0.61 0.25± 1.3 �0.53± 0.42

�2
/ ndf 35.2 / 36 27.9 / 34 27.6 / 33 27.7 / 34

TABLE II. Summary of CLN, CLNnoR, noHQS, and BGL fit

results.

|Vcb|CLN |Vcb|CLNnoR |Vcb|noHQS |Vcb|BGL

|Vcb|CLN 1. 0.75 0.69 0.76

|Vcb|CLNnoR 1. 0.95 0.97

|Vcb|noHQS 1. 0.97

|Vcb|BGL 1.

TABLE III. Correlation matrix of the four extracted |Vcb| val-
ues. For BGL the outer functions of Ref. [4] were used. All

results are derived by bootstrapping [28] the unfolded distri-

butions of Ref. [1] using the published covariance.

keeping the same prefactors as in CLN, to permit com-
parison between ⇢2D⇤ and cD⇤ (in the CLN fit cD⇤ = ⇢2D⇤).
The fit parameters in the BGL, CLN, CLNnoR, and

noHQS fits are summarized in Table I. The results of
these fits for |Vcb|, ⇢2D⇤ , cD⇤ , R1,2(1), and R0

1,2(1) are
shown in Table II. The BGL, CLNnoR, and noHQS re-
sults are consistent with each other, including the un-
certainties, and the fit quality. The correlations of these
four fit results for |Vcb| are shown in Table III and have
been derived by creating a bootstrapped [28] ensemble of
the unfolded distributions of Ref. [1], using the published
covariance. Each set of generated decay distributions in
the ensemble is fitted with the BGL, CLN, CLNnoR, and
noHQS parametrizations, and the produced ensemble of
|Vcb| values is used to estimate the covariance between
them. The correlation of the CLN fit with either BGL,
CLNnoR, or noHQS is substantially below 100%. This
reduces the tension between these fits to below 3�.
As soon as R0

1,2(1) are not constrained to their values
imposed in the CLN framework, large deviations from
those constraints are observed. The BGL, CLNnoR, and
noHQS results favor a large value for R0

1(1), in tension
with the heavy quark symmetry prediction, R0

1(1) =

~ 3 σ

But some indications of
HQS effects in Belle prel. 
measurements, thus…
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One new measurements from BaBar
• Untagged analysis of the lepton momentum 

spectrum

• Signal extracted using a binned fit of the lepton 
spectrum

• 4 different calculations used for b → u𝓁𝝂

‣ BLNP, GGOU, DN, DGE
7
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FIG. 1: MC-generated electron momentum spectra in the
Υ (4S) rest frame for charmless semileptonic B decays. The
full spectrum (solid line) is normalized to 1.0. The largest
contribution is from decays involving higher-mass resonances
and nonresonant states (Xnr

u ) (dash-three-dotted). The ex-
clusive decays (scaled by a factor of five) are: B → πeν (dash-
dotted), B → ρeν (dashed), B → ωeν (dotted), B → ηeν
(long-dashed), B → η′eν (long-dash-dotted).

TABLE I: Average measured values [4] of the form factor
parameters for B → Deν and B → D∗eν decays, as defined
by Caprini, Lellouch, and Neubert [23].

B → Deν B → D∗eν
ρ2D 1.185 ± 0.054
ρ2D∗ 1.207 ± 0.026
R1 1.406 ± 0.033
R2 0.853 ± 0.020

parameters: ρ2D∗ , R1, and R2. These parameters have
been measured by many experiments; we use the average
values presented in Table I.
For the simulation of decays to higher-mass L = 1 res-

onances, D∗∗, i.e., two wide states D∗
0(2400), D

′
1(2430),

and two narrow states D1(2420), D∗
2(2460), we have

adopted the parametrizations by Leibovich et al. [25] and
the HFAG averages [4] for the BFs. For decays to non-
resonant charm states B → D(∗)πeν, we rely on the pre-
scription by Goity and Roberts [26] and the BABAR and
Belle measurements of the BFs [4]. The simulations of
these decays include the full angular dependence of the
rate.
The shapes of the MC-generated electron spectra for

individual B → Xceν decays are shown in Fig. 2. Above
2 GeV/c the dominant contributions are from semilep-
tonic decays involving the lower-mass charm mesons, D
and D∗. Higher-mass and nonresonant charm states are
expected to contribute at lower electron momenta. The
relative contributions of the individual B → Xceν decay

modes have been adjusted to the results of the fit to the
observed spectrum (see Sec. VIB 2).
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FIG. 2: MC-generated electron momentum spectra for
semileptonic decays to charm mesons, B → Xceν with the
total rate (solid line) normalized to 1.0. The individual com-
ponents are: B → Deν (dash-dotted), B → D∗eν (dashed),
B → D∗∗eν + B → D(∗)πeν (dotted). The highly suppressed
B → Xueν signal spectrum (long dashed) is shown for com-
parison.

The difference between the measured exclusive decays
B → (D(∗), D∗∗, D(∗)π)ℓν and the inclusive rate for
semileptonic B decays to charm final states is (1.40 ±
0.28)% [27]. The decay rate for B̄ → D(∗)π+π−ℓ−ν̄
was measured by BABAR [28]. Based on these results
it was estimated that B̄ → D(∗)ππℓ−ν̄ decays account
for up to half the difference between measured inclusive
and the sum of previously measured exclusive branch-
ing fractions. Beyond these observed decays, there are
missing decay modes, such as B → D′(2550)eν and
B → D′∗(2600)eν. Candidates for the 2S radial excita-
tions were first observed by BABAR [31] and recently con-
firmed by LHCb [32]. We have adopted the masses and
widths (130± 18MeV/c2 and 93± 14MeV/c2) measured
by BABAR [31], and have simulated these decays using the
form factor predictions [27]. Both D∗∗ and D′(∗) may
contribute by their decays to D(∗)ππ to B̄ → D(∗)ππℓ−ν̄
decays. The decay rate for D1 → Dππ was measured
by Belle [29] and LHCb [30], LHCb also measured the
decay rate for D∗

2 → Dππ. We account for contributions
from B̄ → D∗∗e−ν̄, B̄ → D′(∗)e−ν̄, and B̄ → D(∗)πe−ν̄
decays to B̄ → D(∗)ππe−ν̄ final states.
The main sources of secondary electrons are semilep-

tonic charm meson decays and J/ψ → e+e− decays. The
J/ψ momentum distribution was determined from this
data set and the MC simulation was adjusted to repro-
duce these measured spectra. The momentum spectra of
D and Ds mesons produced in BB decays were measured
earlier by BABAR [33] and the MC simulated spectra were
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contribution is from decays involving higher-mass resonances
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clusive decays (scaled by a factor of five) are: B → πeν (dash-
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(long-dashed), B → η′eν (long-dash-dotted).

TABLE I: Average measured values [4] of the form factor
parameters for B → Deν and B → D∗eν decays, as defined
by Caprini, Lellouch, and Neubert [23].

B → Deν B → D∗eν
ρ2D 1.185 ± 0.054
ρ2D∗ 1.207 ± 0.026
R1 1.406 ± 0.033
R2 0.853 ± 0.020

parameters: ρ2D∗ , R1, and R2. These parameters have
been measured by many experiments; we use the average
values presented in Table I.
For the simulation of decays to higher-mass L = 1 res-

onances, D∗∗, i.e., two wide states D∗
0(2400), D

′
1(2430),

and two narrow states D1(2420), D∗
2(2460), we have

adopted the parametrizations by Leibovich et al. [25] and
the HFAG averages [4] for the BFs. For decays to non-
resonant charm states B → D(∗)πeν, we rely on the pre-
scription by Goity and Roberts [26] and the BABAR and
Belle measurements of the BFs [4]. The simulations of
these decays include the full angular dependence of the
rate.
The shapes of the MC-generated electron spectra for

individual B → Xceν decays are shown in Fig. 2. Above
2 GeV/c the dominant contributions are from semilep-
tonic decays involving the lower-mass charm mesons, D
and D∗. Higher-mass and nonresonant charm states are
expected to contribute at lower electron momenta. The
relative contributions of the individual B → Xceν decay

modes have been adjusted to the results of the fit to the
observed spectrum (see Sec. VIB 2).
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FIG. 2: MC-generated electron momentum spectra for
semileptonic decays to charm mesons, B → Xceν with the
total rate (solid line) normalized to 1.0. The individual com-
ponents are: B → Deν (dash-dotted), B → D∗eν (dashed),
B → D∗∗eν + B → D(∗)πeν (dotted). The highly suppressed
B → Xueν signal spectrum (long dashed) is shown for com-
parison.

The difference between the measured exclusive decays
B → (D(∗), D∗∗, D(∗)π)ℓν and the inclusive rate for
semileptonic B decays to charm final states is (1.40 ±
0.28)% [27]. The decay rate for B̄ → D(∗)π+π−ℓ−ν̄
was measured by BABAR [28]. Based on these results
it was estimated that B̄ → D(∗)ππℓ−ν̄ decays account
for up to half the difference between measured inclusive
and the sum of previously measured exclusive branch-
ing fractions. Beyond these observed decays, there are
missing decay modes, such as B → D′(2550)eν and
B → D′∗(2600)eν. Candidates for the 2S radial excita-
tions were first observed by BABAR [31] and recently con-
firmed by LHCb [32]. We have adopted the masses and
widths (130± 18MeV/c2 and 93± 14MeV/c2) measured
by BABAR [31], and have simulated these decays using the
form factor predictions [27]. Both D∗∗ and D′(∗) may
contribute by their decays to D(∗)ππ to B̄ → D(∗)ππℓ−ν̄
decays. The decay rate for D1 → Dππ was measured
by Belle [29] and LHCb [30], LHCb also measured the
decay rate for D∗

2 → Dππ. We account for contributions
from B̄ → D∗∗e−ν̄, B̄ → D′(∗)e−ν̄, and B̄ → D(∗)πe−ν̄
decays to B̄ → D(∗)ππe−ν̄ final states.
The main sources of secondary electrons are semilep-

tonic charm meson decays and J/ψ → e+e− decays. The
J/ψ momentum distribution was determined from this
data set and the MC simulation was adjusted to repro-
duce these measured spectra. The momentum spectra of
D and Ds mesons produced in BB decays were measured
earlier by BABAR [33] and the MC simulated spectra were
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electron spectrum from Υ (4S) decays, shown in Fig. 8(b).
Above 2.3 GeV/c, an excess of events corresponding to
the expected signal B → Xueν decays is observed above
the BB background.
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FIG. 8: Electron momentum spectra in the Υ (4S) rest frame:
(a) on-resonance data (solid squares), scaled off-resonance
data (solid triangles), the solid line shows the results of the
fit to the continuum component using both on-resonance
and off-resonance data. (b) On-resonance data with non-
BB background subtracted (open squares), BB MC without
B → Xueν decays (open triangles).

2. BB Background and fit to the electron spectrum

The BB background spectrum is composed of sev-
eral contributions, dominated by primary electrons from
various semileptonic B decays, and secondary electrons
from decays of D, Ds and J/ψ mesons or photon conver-
sions. Hadronic B decays contribute mostly via charged-
particle misidentification, primarily at low momenta.
The MC simulated contributions from different back-
ground sources are shown in Fig. 9.

We estimate the total background by a simultaneous
fit to the observed inclusive electron spectra in off- and
on-resonance data to the sum of the signal and individual
background contributions. For the individual signal and
BB background contributions, we rely on the MC simu-
lated shapes of the spectra (including some corrections),
and treat their relative normalization as free parameters
in the fit. For this extended fit, we expand the χ2 defi-
nition as follows,
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FIG. 9: The simulated contributions to BB events as a
function of the momentum for electron candidates (a) all
events (solid histogram), primary electrons (dashed his-
togram), secondary electrons (dotted histogram), misiden-
tified hadrons (dash-dotted histogram). (b) Primary elec-
trons: B → Deν(solid histogram), B → D∗eν (dashed his-
togram), B → D(∗)πeν (dotted histogram), B → (D∗

0 +
D∗

1)eν (long-dash histogram), B → (D1 +D∗
2)eν (long-dash-

dotted histogram), signal B → Xueν decays (dash-dotted
histogram). (c) Secondary electrons from: D± (solid his-
togram), D0(D̄0) (dashed histogram), Ds (dotted histogram),
J/ψ (dash-dotted histogram), τ (long-dash histogram), γ con-
version (long-dash-dot histogram), other e± (dash-three-dot
histogram).
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ties and the correlation matrix of the fit are available in
the Supplemental Material.
The total inclusive semileptonic BF, averaged over

charged and neutral B mesons, is obtained as the sum
of the individual semileptonic BFs determined by the fit
to the observed electron spectrum:

B(B → Xeν) = (10.34± 0.04stat ± 0.26syst)%. (12)

Using GGOU for the predicted contribution from B →
Xueν decays, we obtain

B(B → Xceν) = (10.18± 0.03stat ± 0.24syst)%, (13)

where the stated systematic uncertainty takes into ac-
count the differences of about 1% between this result
and those obtained with predictions of the B → Xueν
spectrum by DN, BLNP, and DGE. The results, which
are dominated by systematic uncertainties, are consistent
with the most recent HFAG average of B(B → Xeν) =
(10.86± 0.16)% and B(B → Xceν) = (10.65± 0.16)% [4].

B. Differential B → Xueν branching fractions

The partial B → Xueν BF for a given electron mo-
mentum interval ∆p is determined as

∆B(∆p) =
Ntot(∆p)−Nbg(∆p)

2ϵ(∆p)NBB

(1 + δrad(∆p)). (14)

Here Ntot refers to the total number of selected electron
candidates from the on-resonance data and Nbg refers to
the total non-BB and BB background, as determined
from the fit to the spectrum. ϵ(∆p) is the total efficiency
for selecting a signal electron from B → Xueν decays
(including bremsstrahlung in the detector material), and
δrad accounts for the impact of final state radiation on
the electron spectrum. This momentum-dependent cor-
rection is derived from the MC simulation based on PHO-
TOS [18].
The differential BF for B → Xueν decays, fully cor-

rected for efficiencies and radiative effects, as a function
of the electron momentum in the Υ (4S) rest frame is
shown in Fig. 11, and in the B meson rest frame in
Fig. 12. The error bars represent the statistical uncer-
tainties of the measurement. They do not include the
systematic uncertainties, nor the uncertainty due to the
B → Xueν predictions. For fits using the GGOU pre-
diction for B → Xueν the results for the differential BFs
and the correlation matrix are available in the Supple-
mental Material. Differences of the fitted spectra and
the data are clearly visible inside the wide bin, and are
most pronounced for BLNP, for which the predicted rate
is negative above 2.4GeV/c. In all cases the data exceed
the predictions above 2.3 GeV/c, and are lower below,
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FIG. 11: The differential branching fraction for charmless
semileptonic B decays (data points) as a function of the
electron momentum [in the Υ (4S) rest frame] after back-
ground subtraction and corrections for bremsstrahlung and
final state radiation, compared to the Monte Carlo simula-
tion (histogram). The uncertainties indicate the statistical
uncertainties on the background subtraction, including the
uncertainties of the fit parameters. The shaded area indicates
the momentum interval for which the on-resonance data are
combined into a single bin.
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FIG. 12: The differential branching fraction for charmless
semileptonic B decays (data points) as a function of the elec-
tron momentum [in the B rest frame] after background sub-
traction and corrections for bremsstrahlung and final state ra-
diation, compared to the Monte Carlo simulation (histogram).
The uncertainties indicate the statistical uncertainties on the
background subtraction, including the uncertainties of the fit
parameters. The shaded area indicates the momentum inter-
val for which the on-resonance data are combined into a single
bin.
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FIG. 13: The comparison of the theoretical differential
branching fraction for charmless semileptonic B decays with
normalization based on the fit as a function of the electron
momentum [in the Υ (4S) rest frame] for DN (solid), BLNP
(dashed), GGOU (dotted) and DGE (dash-dotted). The
shaded area indicates the momentum interval for which the
on-resonance data are combined into a single bin.

such that the data summed over the wide bin agree with
the predictions in this momentum range.

A comparison of the predicted B → Xueν electron
spectra, each normalized to the fitted rate is presented
in Fig. 13. While these spectra agree reasonably well
for DN, GGOU and DGE, the BLNP prediction deviates
substantially. This is explained by a lower predicted rate
for momenta above 2.1 GeV/c, which leads to a signifi-
cantly larger fitted normalization of this spectrum.

C. Total charmless branching fraction

The total BF for charmless B → Xueν decays is deter-
mined from the partial BF∆B(∆p) in a given momentum
range ∆p, as follows:

B(B → Xueν) = ∆B(∆p)/fu(∆p), (15)

where fu(∆p) is the theoretically predicted fraction of
the electron spectrum. These total BF which have been
determined as a function of pmin, the lower limit of the
momentum range ∆p = [pmin, 2.7GeV/c], (with fixed up-
per limit of 2.7 GeV/c) and their relative uncertainties
are shown in Figs. 14 and 15, for the four different the-
oretical predictions. Up to 2.1 GeV/c, the resulting BFs
are independent of pmin, above 2.1 GeV/c, the BFs and
their uncertainties increase significantly.

DN (solid)

BLNP
GGOU

DGE (dashed dotted)

BLNP GGOU DN DGE

|Vub| x 103 4.6 ± 0.3 4.0 ± 0.3 3.8 ± 0.3 3.8 ± 0.1

Depending on Input (b → c𝓁𝝂 or b → sɣ) can
span a range from 4.3 - 4.6 x 10-3
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Largest unknown: shape function
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FIG. 4. Comparison between the |Vub| ranges due to functional form variations given in [23] and the values obtained using NN
trained on moments computed with the same inputs used there.

NN replica is required to reproduce the moments at seven equally spaced q
2 points between q

2 = 0 and 13GeV2. The
training is stopped when �

2 = n, where n is the total number of constraints, and �
2 is computed using relative errors

of 3% on the normalization, first and second moment, and of 10% on the third moment, assuming no correlation
between di↵erent moments and di↵erent bins in q

2. The training is rather long and becomes very slow for smaller
errors. After training a sample of NNs we select those whose derivative never exceeds 50 in absolute value and which
have only one dominant peak (in the case of multiple peaks we check that the height of the subdominant ones is less
than 20% of the height of the dominant one, measured wrt the common trough). A representative sample of accepted
and rejected shapes is shown on the left in Fig. 3, while on the right we display a sample of about 150 replicas for
F3(k+, 0) after this pruning.

Each triplet of the selected NN replicas of F1�3(k+, q2) then allows for a determination of |Vub| when it is confronted
with the experimental results for a given partial BR. In order to compare with the results given in the GGOU original
paper we compute |Vub| from the same four specific experimental results used there, namely

A MX cut: MX < 1.7, E` > 1.0 GeV, Belle [40];

B Combined MX and q
2 cuts: MX  1.7GeV, q

2
> 8GeV2

, E` > 1.0 GeV, Babar & Belle [40, 42];

C Lepton endpoint: E` > 2.0 GeV, Babar [41],

and compare the spread in |Vub| with the functional form dependence given in [23]. This is illustrated in Fig. 4, where
the spread in the value of |Vub| measures the SFs uncertainty. We have checked that using di↵erent NN architectures
leads to very similar results. In the calculation of the partial rates we use the same high-q2 setting used by [23] for
the functional form uncertainty, namely the second method described in Sec. 5 of that paper. We observe that the
central values are very close to those obtained in [23]. The spread in the |Vub| values is larger than in 2007, but the
standard deviation of the distributions are roughly comparable with the functional form errors found in that analysis.

B. As a second step, we include in the analysis the complete theoretical and parametric uncertainty on the moments,
with all the correlations between moments and di↵erent q2 bins. Here we want to show that the method allows us to
include multiple data with non-trivial correlations and that the errors and correlations in the inputs are reproduced
by the ensemble of trained replicas. The OPE parameters are taken from [14] and the theoretical uncertainties of the
Fi moments are estimated as in that paper. The theoretical correlation between di↵erent q

2 bins is estimated with
method C in Sec. 3 of [43]. After adding the covariance matrices related to the input parameters and to the theoretical
uncertainties, a replica of pseudo-data for the moments of the three SFs is produced assuming gaussian distributions.
The NN for each Fi are then trained on this replica, keeping track of the input parameters, and in particular of mb,
which is used in the calculation of physical quantities from Eq. (2). The training is again ruled by the �

2 function,
which now includes all correlations. Even though the typical total uncertainty of the first three moments is as large
as 25-30%, high correlations between q

2 bins do not allow to speed up the training significantly.
As we adopt up-to-date inputs, we can extract |Vub| from the latest experimental results and compare the results

with the most recent HFAG compilation [15]; this is done in Table 1 for the most representative cases, using the

Interesting future direction: global fits to everything, see e.g. also SIMBA 1303.0958

Moments constraint by b → c𝓁𝝂 or b → sɣ, 
but functional form not known

~ B-Meson ‘PDF’

Tensions..
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FIG. 3. Left: examples of accepted and rejected (in red) shapes. Right: sample of NN replicas of F3(k+, 0) trained on the first
three moments only after applying the selection criteria.

order we are working. Throughout the learning phase we monitor the evolution of the �
2, computed in the various

cases as detailed below. The scarcity of data makes it impossible to use a control sample, as done by the NNPDF
collaboration. The �

2 first decreases quickly, with training progressively slowing as expected. We stop the learning
when a certain condition is met, typically when the �

2 of each replica reaches a certain value.
It is worth stressing that the first two or three moments do not constrain the SFs much. The point is illustrated in

Fig. 2 by a representative selection of NN for F2(k+, 0), which are normalized to 1 and satisfy the first two moments
within a few % and and the third moment within 60%. A tighter constraint on the third moment would not change
this picture significantly. Of course, not all the shapes shown in this plot are physically acceptable and only a handful
of them can roughly reproduce the photon spectrum in B ! Xs�. However, this plot demonstrates the capability of
NN to properly sample the functional space.

One should be aware that the sampling can be biased in several ways, for instance by selection based on the speed
of learning, by improper choice of random initial weights or by the use of an underlying function to speed the training
up. Indeed, in order to decrease the learning time and to ensure the vanishing of the SFs at the endpoint, we scale
the network output by a function that provides the proper behavior. We know the SFs must approach zero at �1,
and cut o↵ at ⇤̄. To ensure this, one option is to define our full SFs as

Fi(k+, q
2) = (ci0 + ci1q

2) e(ci2+ci3q
2)k+ (⇤̄� k+)

(ci4+ci5q
2)
Ni(k+, q

2), (10)

where Ni is the NN function to be trained. The coe�cients cij , are trained simultaneously with the NN weights and
are unconstrained. In the case of the {2,7,1} architecture, which we generally adopt below, we therefore have a total
of 35 parameters. In order to minimize the bias we have used a set of di↵erent underlying functions, although there
would be no bias if the SFs were su�ciently constrained by experimental data.

As already mentioned, additional information on the SFs comes from the photon spectrum measured in inclusive
radiative B decays. One could include these data with an additional O(10%) theoretical uncertainty to account for
power suppressed corrections to the relation between the photon and semileptonic SFs at q

2 = 0. We postpone a
careful study of the photon spectrum to a future publication. However, in the present pilot study we include the
main qualitative features of the experimental photon spectrum, assuming that the SFs are all dominated by a single
peak (without excluding multiple peaks) and are never too steep. As we will illustrate in a moment, these minimal
assumptions strongly reduce the variety of functional forms, as would also do a measurement of the MX spectrum at
Belle-II.

IV. RESULTS AND DISCUSSION

A. As a first step, we train the NN on the moments only and compare with the functional form error found in
[23]. At this stage we are only interested in the spread of the replicas in functional space. To this end we compute the
moments with the same (outdated) input parameters used in [23], neglecting all uncertainties and correlations. Each

Tensions..

But not possible to propagate errors to acceptance
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FIG. 4. Comparison between the |Vub| ranges due to functional form variations given in [23] and the values obtained using NN
trained on moments computed with the same inputs used there.

NN replica is required to reproduce the moments at seven equally spaced q
2 points between q

2 = 0 and 13GeV2. The
training is stopped when �

2 = n, where n is the total number of constraints, and �
2 is computed using relative errors

of 3% on the normalization, first and second moment, and of 10% on the third moment, assuming no correlation
between di↵erent moments and di↵erent bins in q

2. The training is rather long and becomes very slow for smaller
errors. After training a sample of NNs we select those whose derivative never exceeds 50 in absolute value and which
have only one dominant peak (in the case of multiple peaks we check that the height of the subdominant ones is less
than 20% of the height of the dominant one, measured wrt the common trough). A representative sample of accepted
and rejected shapes is shown on the left in Fig. 3, while on the right we display a sample of about 150 replicas for
F3(k+, 0) after this pruning.

Each triplet of the selected NN replicas of F1�3(k+, q2) then allows for a determination of |Vub| when it is confronted
with the experimental results for a given partial BR. In order to compare with the results given in the GGOU original
paper we compute |Vub| from the same four specific experimental results used there, namely

A MX cut: MX < 1.7, E` > 1.0 GeV, Belle [40];

B Combined MX and q
2 cuts: MX  1.7GeV, q

2
> 8GeV2

, E` > 1.0 GeV, Babar & Belle [40, 42];

C Lepton endpoint: E` > 2.0 GeV, Babar [41],

and compare the spread in |Vub| with the functional form dependence given in [23]. This is illustrated in Fig. 4, where
the spread in the value of |Vub| measures the SFs uncertainty. We have checked that using di↵erent NN architectures
leads to very similar results. In the calculation of the partial rates we use the same high-q2 setting used by [23] for
the functional form uncertainty, namely the second method described in Sec. 5 of that paper. We observe that the
central values are very close to those obtained in [23]. The spread in the |Vub| values is larger than in 2007, but the
standard deviation of the distributions are roughly comparable with the functional form errors found in that analysis.

B. As a second step, we include in the analysis the complete theoretical and parametric uncertainty on the moments,
with all the correlations between moments and di↵erent q2 bins. Here we want to show that the method allows us to
include multiple data with non-trivial correlations and that the errors and correlations in the inputs are reproduced
by the ensemble of trained replicas. The OPE parameters are taken from [14] and the theoretical uncertainties of the
Fi moments are estimated as in that paper. The theoretical correlation between di↵erent q

2 bins is estimated with
method C in Sec. 3 of [43]. After adding the covariance matrices related to the input parameters and to the theoretical
uncertainties, a replica of pseudo-data for the moments of the three SFs is produced assuming gaussian distributions.
The NN for each Fi are then trained on this replica, keeping track of the input parameters, and in particular of mb,
which is used in the calculation of physical quantities from Eq. (2). The training is again ruled by the �

2 function,
which now includes all correlations. Even though the typical total uncertainty of the first three moments is as large
as 25-30%, high correlations between q

2 bins do not allow to speed up the training significantly.
As we adopt up-to-date inputs, we can extract |Vub| from the latest experimental results and compare the results

with the most recent HFAG compilation [15]; this is done in Table 1 for the most representative cases, using the
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Belle II data set
Belle data set

BaBar data set
CLEO data set ~ ~ ~50

LHCb Upgrade
LHCb 1/fb
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The future of flavour B-Factory data sets: ~1.2 ab-1 

LHCb data set:    ~ 5 fb-1

3

Table 1: The luminosity scenarios considered along with the estimated number of bb-pairs produced inside the
acceptance of the experiments are given. The LHCb cross sections are taken from Ref. [25] assuming a linear
increase in bb-production cross section with LHC beam energy. For Belle II only e

+
e
�
! ⌥ (4S) ! BB̄ data sets

are estimated.

‘Milestone I’ ‘Milestone II’ ‘Milestone III’
year 2012 2020 2024 2030

LHCb L [ fb�1 ] 3 8 22 50
n(bb) 0.3⇥ 1012 1.1⇥ 1012 37⇥ 1012 87⇥ 1012p

s 7/8TeV 13TeV 14TeV 14TeV

Belle (II) L [ ab�1 ] 0.7 5 50 -
n(BB̄) 0.1⇥ 1010 0.54⇥ 1010 5.4⇥ 1010 -p

s 10.58GeV 10.58GeV 10.58GeV -

LHC Shutdown

LHC Shutdown~ 22 fb-1

LHC Shutdown

2017
Q1 Q2 Q3 Q4

2018
Q1 Q2 Q3 Q4

2019
Q1 Q2 Q3 Q4

2020
Q1 Q2 Q3 Q4

2021
Q1 Q2 Q3 Q4

2022
Q1 Q2 Q3 Q4

2023
Q1 Q2 Q3 Q4

2024
Q1 Q2 Q3 Q4

2025
Q1 Q2 Q3 Q4

2026
Q1 Q2 Q3 Q4

2027
Q1 Q2 Q3 Q4

2028
Q1 Q2 Q3 Q4

2029
Q1 Q2 Q3 Q4

2030
Q1 Q2 Q3 Q4

Belle II

LHCb

Start of Data taking period

~ 50 ab-1

~ 8 fb-1

~ 50 fb-1

Belle II

LHCb

LHCb

~ 5 ab-1

Milestone I

Milestone II

Milestone III

End of Data taking period

Run 2

Run 3

Run 4

Fig. 1: An overview of the expected Belle II and LHCb timelines along with their estimated integrated luminosities
at each milestone. The scenarios compared in this manuscript are shown in bold. For more details of the expected
luminosities and number of produced bb-pairs at each milestone see Table 1. The LHCb Phase-I-Upgrade [27]
is currently scheduled for the duration of the LHC shutdown between 2019 – 2020. The LHCb experiment has
recently expressed its interest to continue running past the Phase-I-Upgrade until the end of the funded LHC Run
in 2035 [30].

quark, can still easily allow for tree-level new physics
effects of order 10% [31]. Effects of this size can cause
shifts in the tree-level determination of � of up to 4�.
Thus, comparison between the point in (⇢, ⌘) space de-
termined using � and |Vub|/|Vcb| with that found using

sin(2�) and �md/�ms is a cornerstone of the flavour
physics program at both LHCb and Belle II, where any
discrepancies will be of huge importance.

Sensitivity to |Vub| and |Vcb| arises from the semilep-
tonic transitions b ! u`⌫` and b ! c`⌫` respectively.

~ 5 ab-1~ 2 ab-1
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Excl. |Vub |

Belle II 5/ab 50/ab

rel. Error 1,9 % 1,0 %

LHCb 10/fb 22/fb 50/fb

rel. Error 4 % 3 % 2 %

Stat. scaling, 
improvements in syst. such that 

3% (exp)  (+)
lattice error down to 2% and 1%

Based on Belle II MC study, 
assuming improvements in lattice 

Excl. |Vcb |

Belle II 5/ab 50/ab

rel. Error 1,6 % 1,1 %

Based on stat. scaling of current untagged measurements

Today: ~ 3%

Today: ~ 2%

Today: ~ 6%
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possible. The separation of charged and neutral B2127

mesons will also be important.2128

Belle II can take advantage of its large dataset2129

by maximizing the resolution in the hadronic vari-2130

ables at the cost of e�ciency, for example utilizing2131

a very clean full-reconstruction sample. Precise2132

di↵erential measurements will also feed back into2133

the experimental analyses via an improved Monte-2134

Carlo model for the inclusive b ! u signal. As2135

already mentioned, another important aspect is to2136

perform the measurements as theory-independent2137

as possible, and in particular avoid a direct O(1)2138

dependence on the employed B ! Xu`⌫ signal2139

model. This also means that untagged measure-2140

ments performed in the ⌥ (4S) frame should also2141

be reported in that frame, since the unfolding to2142

the B frame introduces a direct dependence on the2143

theory prediction.2144

Theoretically, the central ingredient for a global2145

|Vub| fit is a model-independent treatment of the2146

shape function, as was first proposed in Ref. [70].2147

More recently, artificial neural networks have been2148

used to provide a very flexible and essentially2149

model-inpendent parametrization of the shape func-2150

tion [134]. The important requirement is that it2151

must be possible within the global fit to let the2152

form of F (k) as well as its uncertainties be charac-2153

terized solely by the uncertainties in the included2154

experimental measurements, such that any intrin-2155

sic limitations from model-dependent assumptions2156

are avoided.2157

Using this approach, a global fit to all available2158

B ! Xs� measurements extracting |C incl
7 | along2159

with F (k) has been performed by the SIMBA col-2160

laboration in Ref. [135], clearly demonstrating the2161

feasibility of this approach.2162

Projections for a global fit using two projected2163

single-di↵erential spectra in mX and E` for B !2164

Xu`⌫ and a E� spectrum in B ! Xs� from Belle2165

II at 1ab�1 and 5ab�1 are shown in Fig. 1.23. Pro-2166

jections beyond this are hard to obtain as they will2167

require improvements on the experimental system-2168

atics. We also stress that these projections should2169

only serve as an indication. The achievable pre-2170

cision will strongly depend on the precision and2171
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Figure 1.23: Projections for a global |Vub| fit at
Belle II with 1ab�1 and 5ab�1. No theory un-
certainties are included in the fit, which can be
expected to be of similar size.

certainties at 1ab�1 (5ab�1) are about 4.5% (3%) 2173

for the fit to B ! Xu`⌫ only and 3% (2%) for the 2174

combined fit to B ! Xs� and B ! Xu`⌫. These 2175

fit uncertainties already include the dominant para- 2176

metric uncertainties from mb and F (k), as these 2177

are constrained in the fit by the data. They do 2178

not include theoretical uncertainties, which can 2179

be expected to be of roughly similar size as the fit 2180

uncertainties. These projections do not include sub- 2181

leading shape function e↵ects, which are expected 2182

to become relevant at this level of precision, but 2183

can then also be constrained by the measurements. 2184

In general, one can expect that the increased Belle 2185

II statistics can and should be exploited to reduce 2186

the current systematic limitations. 2187

• More details on the projections for the spec- 2188

tra? 2189

• Mention B ! Xs`+`�? 2190
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• There will be more channels: 

34

The future of |Vub| and |Vcb|

Bs ! K(⇤) ` ⌫̄`

• But more data also will mean, more ideas


• Already mentioned: Global Fits


• Combined incl. and excl. determinations


• Combined analyses across channels
Phys. Rev. D 95, 115008 (2017), arXiv:1703.05330

B ! D ` ⌫̄` +B ! D⇤ ` ⌫̄`

B ! Xu ` ⌫̄` +B ! ⇡ ` ⌫̄`
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• Important to sort out excl. versus 
incl. tension as it limits our 
capability to challenge the SM
Currently global CKM fits average over the difference
and inflate uncertainties. 

?

?

Belle II data set
Belle data set ~ ~50

LHCb Upgrade
LHCb 1/fb
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Beyond this point
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CKM Picture over the years: from discovery to precision

Existence of CPV phase established in 2001 by BaBar & Belle
• Picture still holds 15 years later, constrained with remarkable precision
• But: still leaves room for new physics contributions
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Latest CKM Fit from CKMfitter



Florian Bernlochner 11th Annual Meeting of the Helmholtz Alliance “Physics at the Terascale” 38

Example New Physics Scenario with |Vub | / |Vcb | as an anchor

Figure 6: The constraints similar to Fig. 2 (left) and Fig. 3 (right) but we added new physics

contributions as parameterized as in Eq. 6, which are varied in the fit. The obtained best fit

values are H
NP
Bd

= 0.97, �
NP
Bd

= 4.9
�

and the minimum �
2
/ndof is 1.20/5, for the left, and H

NP
Bd

=

0.87, �
NP
Bd

= 14.1
�

and the minimum �
2
/ndof is 8.34/5, for the right.
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Figure 7: The constraints of H
NP
Bd
� �

NP
Bd

in the scenario where new physics enters in the B � B

mixing as given in Eq. 6, current (left), 50 ab
�1

case a) (middle) and case b) (right). The SM

point is (1, 0) in this plane. The cross point indicates the minimum �
2
/ndof which are 0.65/2,

1.20/2, 8.34/2, respectively.The contour indicates 1�, 2�, 3�, · · · significance. We observe that the

deviation from the SM is ⇠ 1� (left), ⇠ 3� (middle), 8� (right).

7

i.b Introduction: Unitarity Triangle (2/2)

Constraints:

Tree-level a priori ’free’ from New physics

Vkm

qk

qm

W

Loop mediated sensitive to New physics!

B
0

B̄
0

B
0

B̄
0

+

New Physics

ubV
K

sm & dm

Unitarity over-constrains CKM Matrix ) Highly non-trivial test of the SM with
3 quark & lepton generations!

7 / 52

Figure 6: The constraints similar to Fig. 2 (left) and Fig. 3 (right) but we added new physics

contributions as parameterized as in Eq. 6, which are varied in the fit. The obtained best fit

values are H
NP
Bd

= 0.97, �
NP
Bd

= 4.9
�

and the minimum �
2
/ndof is 1.20/5, for the left, and H

NP
Bd

=

0.87, �
NP
Bd

= 14.1
�

and the minimum �
2
/ndof is 8.34/5, for the right.

X

SM

0.0 0.5 1.0 1.5 2.0
-20

-10

0

10

20

HB

ph
iB

X

SM

0.0 0.5 1.0 1.5 2.0
-20

-10

0

10

20

HB

ph
iB

X

SM

0.0 0.5 1.0 1.5 2.0
-20

-10

0

10

20

HB

ph
iB

Figure 7: The constraints of H
NP
Bd
� �

NP
Bd

in the scenario where new physics enters in the B � B
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2
/ndof which are 0.65/2,
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1.4 Impact of the new lattice result on the parameter for �Ms/�Md

(⇠)

2 The New Physics fit: the B�B mixing scenario and Vub

scenario

2.1 New physics scenario I: new physics contributions to the B � B
mixing

The studies in the previous section show that the small tension we observe between sin 2�1 and

|Vub| are not very significant as long as the current central values stay as of now. On the other

hand, if the central values of �2, �1, �3 shift, this tension will become more severe. The example

of case b) is quite interesting: it indicates that the central values of �2 and �3 meet higher values

of ⇢̄ and ⌘̄ which is closer to the central values of |Vub|. Then, the tension can be solved in the

simplest way by adding a new physics contribution to �1 to increase its value. Motivated by

this observation, we include the new physics contribution to the B � B mixing in this section,

by using the standard parameterization:

H
NP
Bq

e
2i�NP

Bq ⌘
hB0

q |HSM
e↵ +HNP

e↵ |B0
qi

hB0
q |HSM

e↵ |B0
qi

(6)

Most of the new physics models can be parameterized in this way unless they change the SM

contributions to the B �B mixing (e.g. 3⇥ 3 CKM unitarity is broken). Inclusion of this new

physics contribution modifies two observables as:

sin 2�1 = sin 2(�
SM
1 + �

NP
Bd

), �Mq = HBq�M
SM
q (7)

Now, we perform the same fit for the case a) and b) of the previous section while varying these

two variables H
NP
Bd

, �
NP
Bd

in the fit. The results are shown in Fig. 6 left and right, respectively. In

the case of a) (the central values of the experimental measurements �2, �1, �3 do not change),

we find H
NP
Bd

= 0.97, �
NP
Bd

= 4.9
�

and the minimum �
2
/ndof goes down from 10.50/7 to 1.20/5.

The case of b) (the central values of the experimental measurements �2, �1, �3 shift to the lower

end of the currently allowed 1� range) is more dramatic: we find H
NP
Bd

= 0.87, �
NP
Bd

= 14.1
�

and

the minimum �
2
/ndof goes down from 85.46/7 to 8.34/5. Therefore, we can conclude that the

scenario with new physics contribution in B � B mixing can improve the fit significantly for

both cases a) and b) at 50 ab
�1

.

The improvement in �
2
/ndof indicates that a model with new physics contribution in the

B �B mixing is favored. To see this di↵erently, we plot the contours on the H
NP
Bd

� �
NP
Bd

plane

in Fig. 7. The SM is the (H
NP
Bd

, �
NP
Bd

) = (1, 0) point in this plane. The left figure is the current

situation. The 1 and 2 � contours are shown here. The cross mark indicates the �
2

minimum

point as given previously. We can conclude that currently, the SM agrees with 1 � significance.

The middle figure is the result of 50ab
�1

for the case a). As indicated earlier in Fig. 2 the SM

shows a small tension in this case: sin 2�1 is slightly o↵ from the overlap of the �2 and �3 region

as well as |Vub| curves. This leads the �
2

minimum point to be approximately 3 � away from

the SM point. Finally, the right figure is the result of 50ab
�1

for the case b). The cross point

is approximately 8� away from the SM point.

A Appendix: CKM formalism and fit inputs

A.1 The CKM matrix

We define the CKM matrix as :

VCKM =

0

@
Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

1

A (8)
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for Belle II sensitivity

SM excluded by > ~ 8 σ
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Compatibility of |Vub| from vector decays

2.0 2.5 3.0 3.5 4.0 4.5

B→ρl ν LCSR + Belle, q2< 8 GeV2

B→ρl ν LCSR + Belle, q2< 12 GeV2

B→ρl ν LCSR + BaBar, q2< 8 GeV2

B→ωlν LCSR + Belle, q2< 7 GeV2

B→ωlν LCSR + BaBar, q2< 8 GeV2

B→ωlν LCSR + BaBar, q2< 12 GeV2

B→πl ν, global fit

B→Xul ν inclusive, global fit

CKMfitter indirect

UTfit indirect

|Vub|×103

Figure 4: Our predictions for |Vub| from B ! ⇢`⌫ and B ! !`⌫ (blue) compared to global fits to Vub

from exclusive [80] and inclusive channels [89] and indirect determinations from fits of the
unitarity triangle [93, 94].

|Vub|
B!!`⌫

BaBar, q2<8GeV
2 = (3.25± 0.36± 0.53)⇥ 10�3 , (46)

|Vub|
B!!`⌫

BaBar, q2<12GeV
2= (3.25± 0.29± 0.46)⇥ 10�3 , (47)

where the first error is experimental and the second theoretical. For the FF B ! ⇢ and B ! !
we have taken into account that it is a b ! u and not a b ! d transition by scaling the FFs as
in (C.16).

Our results can be compared to the value extracted from B ! ⇡`⌫ decays, obtained in
Ref. [89] from a global fit of BaBar and Belle data to lattice and LCSR computations,

|Vub|
B!⇡`⌫ = (3.41± 0.22)⇥ 10�3 , (48)

or the average of the inclusive semi-leptonic b ! u determinations [80]

|Vub|
incl. =

�
4.41± 15+15

�17

�
⇥ 10�3 , (49)

where the first error is experimental and the second error is theoretical. Finally we also compare
our results to the values obtained indirectly from global fits of the CKM matrix [93, 94],

|Vub|CKMfitter =
�
3.44+0.25

�0.08

�
⇥ 10�3 , |Vub|UTfit = (3.61± 0.12)⇥ 10�3 . (50)

The various values for |Vub| quoted in this section are summarised graphically in Fig. 4.
The B ! (⇢,!) FFs do not, and should not, incorporate an S-wave contribution since the

(⇢,!) ! ⇡⇡ is necessarily in a P -wave (cf. section 2.3). Hence the experimental branching
ratios might be too large which in turn leads to a systematic upward shift of |Vub| as extracted
from these analyses. In Ref. [42] (cf. Fig. 9 of that reference) this e↵ect has been analysed and it
has been found that the integrated line-shapes of the S-wave over the interval [m⇢��⇢,m⇢+�⇢]

27

J. High Energ. Phys. (2016) 2016: 98
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|Vub| / |Vcb| 

5

alternative parametrisation from Boyd, Grinstein and
Lebed (BGL) [44] results in values closer to the inclusive
determination, depending on the particular parameters
used. Clearly, deeper understanding of both the exper-
imental and theoretical approaches is necessary to re-
solve these discrepancies [45].

Precision measurements of |Vub| and |Vcb| can be
combined with measurements of the CKM angle � to
determine a uniquely tree-level measurement of the CKM
parameters (⇢, ⌘), under the SM hypothesis. This is a
good probe for new physics when compared to mea-
surements of sin(2�), �md and �ms which determine
the same point from loop processes. The direct deter-
mination of the CKM angle � predominantly uses de-
cays of the form B

�
! D

0
K

� where the ratio between
the favoured b ! c and supressed b ! u transitions
goes like re

i(���), where r and � are unknown hadronic
parameters. A comprehensive review on the determi-
nation of � can be found in Refs. [46,47]. Prospects
for improved determinations of the CKM angle � from
both Belle II and LHCb are considerable. By the end
of milestone I (II) Belle II expect to determine � with
6� (1.5�) precision [28]. LHCb expect to determine �

at the level of 4� (milestone I), 1.5� (milestone II) and
< 1� (milestone III) [7].

The projections for exclusive and inclusive determi-
nation of |Vub| and |Vcb|, overlaid with those for direct
determination of CKM angle �, are shown in Fig. 6.
This is overlaid with the current world average using
all contraints on (⇢, ⌘) from the CKMfitter collabora-
tion [38]. It it noticeable that already there is some ten-
sion between |Vub|/|Vcb| measurements and the CKM
fit. An additional figure in Appendix Appendix A, Fig. 12,
shows the same plot with the current experimental con-
straints on sin(2�) and �md/�ms, from Ref. [35], ad-
ditionally overlaid.

3 Lepton flavour universality in trees

A key test of LFU is measuring the ratio of branching
fractions of decays that differ only by the lepton content
of the final state. Measurements of this type are repre-
sented by the observable R(X), which denotes the ratio
of branching fractions of B! X`⌫ (or B! X`

+
`
� in

the next section) decays, for two choices of `, where `

can be e, µ or ⌧ .
A large class of SM extensions contain new inter-

actions that couple preferentially to the third genera-
tion of quarks and leptons, such as models involving
Higgs-like charged scalars or W 0 bosons. Ratios involv-
ing tree-level b! c⌧⌫ transitions are particularly sen-
sitive to these NP scenarios. Two of these observables,
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Fig. 3: Prospects of the future sensitivity for various
inclusive and exclusive measurements of |Vub| and |Vcb|

with the current world averages from Ref. [35] (not
filled) and the future projections at milestones I, II and
III (filled). The current inclusive and exclusive combi-
nations are shown as the gray filled areas.
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Table 2: Values used for the projections of future |Vub| and |Vcb| measurements

Measurement Current World Current Projected Uncertainty
Average (⇥10�3) Uncertainty Belle II LHCb

(Ref. [35]) (Ref. [35]) 5 ab�1 50 ab�1 8 fb�1 22 fb�1 50 fb�1

|Vub| inclusive 4.49± 0.23 5.1% 3.4% 3.0% - - -
|Vub| exclusive 3.72± 0.19 5.1% 2.5% 2.1% - - -
|Vcb| inclusive 42.2± 0.8 1.9% 1.3% 1.2% - - -
|Vcb| exclusive 39.2± 0.7 1.8% 1.6% 1.1% - - -
|Vub|/|Vcb| 83.0± 5.7 6.9% - - 3.4% 3.0% 2.3%

Table 3: Values used for the projections of future limits on right-handed currents

Measurement Current World Current Projected Uncertainty
Average (⇥10�3) Uncertainty Belle II LHCb

(Ref. [35]) (Ref. [35]) 5 ab�1 50 ab�1 8 fb�1 22 fb�1 50 fb�1

Inclusive 4.49± 0.23 5.1% 3.4% 3.0% - - -
B�! ⌧�⌫ 4.2± 0.4 9.5% 4.7% 2.2% - - -
B0! ⇡�`+⌫ 3.72± 0.16 4.3% 2.0% 1.5% - - -
⇤0
b ! pµ�⌫ 3.27± 0.23 6.9% - - 3.9% 3.5% 2.9%
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Fig. 4: The current (blue) and future (red) compatibilty,
at milestone III, of the difference between inclusive and
exclusive measurements of |Vub| and |Vcb|.

R(D) and R(D⇤), are defined as the ratio of the branch-
ing fractions of B0

! D
(⇤)+

⌧
�
⌫⌧ to B

0
! D

(⇤)+
`
�
⌫`

with ` = e or µ. Their Standard Model predictions are
(0.299 ± 0.003) and (0.257 ± 0.003) respectively [43]
(see also Refs. [48,49,50] for other relevant work on
this). Belle and BaBar have made measurements of
both R(D) and R(D⇤) [12,10,11,13,14], while LHCb
has currently only measured R(D⇤) [15,16]. LHCb also
has the potential to measure R(D), but has not yet pub-
lished such a measurement, hence projections for this
are not shown. The HFLAV combination of the R(D⇤)
measurement from LHCb using muonic ⌧ decays with
the Belle and BaBar measurements results in a devi-

Rε
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ν-µp→0bΛ
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contours hold 68.3%

Fig. 5: Prospects for new physics measurements related
to right-handed currents with the current world aver-
ages from Ref. [35] (not filled) and the future projec-
tions at milestones I, II and III (filled). The current
world average (gray dot and gray line) and the SM point
(black dot) with the 1� exclusion contour at milestone
III (black line) are also shown.

ation of 3.9� from the SM prediction [46]. During the
writing of this manuscript, LHCb published a second
measurement of R(D⇤) using hadronic ⌧ decays [16],
which was not included as part of the current world
average values in this document. The addition of this
result is expected to shift the central value of the world
average towards the SM predictions slightly, but due
to the precision of the measurement, the overall signifi-
cance of the deviation stays approximately the same. As
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Fig. 6: Prospects for CKM fits in (⇢, ⌘) space using tree-
level processes only with the current world averages
from Ref. [35] (not filled) and the future projections
of the at milestones I, II and III (filled). The current
CKM fit, using all available constraints, from Ref. [38]
(gray line with light gray fill) along with the future
combination of �, |Vub| and |Vcb| and the 1�, 3� and �

exclusion contours at mileston III (dark gray lines with
no fill) are also shown.

this effect is expected to be small, we neglect the addi-
tion of this measurement and proceed with the current
HFLAV world average. The hadronic ⌧ R(D⇤) measure-
ment is considered in the future extrapolations.

Complementary measurements have also been made
of the ratios R(K) and R(K⇤). These ratios differ from
R(D(⇤)) as they do not occur at tree level in the SM
or involve a ⌧ lepton and therefore probe NP scenar-
ios that couple to different generations of fermions in
loop processes. Measurements of R(K) and R(K⇤) by
the Belle and BaBar experiments are statistically lim-
ited [51,52], however, the LHCb measurements of R(K)
and R(K⇤) show discrepancies with respect to the SM
prediction of around 3� [19,18] and are discussed in
greater detail in Sec. 4. These measurements, in addi-
tion to R(D) and R(D⇤), suggest a pattern of tensions
among tests of LFU.

The large data samples to be collected by the LHCb
and Belle II experiments will be sufficient to confirm the
existence of these anomalies, if they are indicative of vi-
olation of LFU. In this section, we predict the sensitiv-
ity of LHCb and Belle II to R(D) and R(D⇤). The cen-
tral values used for the LHCb and Belle II predictions
are taken from the current HFLAV world average [46].
The LHCb R(D⇤) statistical uncertainties are scaled
from the values measured in the hadronic and muonic
channels in Run I according to the expected increase in
integrated luminosity, B production cross section and

increase in trigger efficiency [27]. Most of the system-
atic uncertainties are proportional to the data or control
samples and are scaled in the same way. However, due
to the use of external inputs, there are some irreducible
systematics. The external input of the branching frac-
tion of ⌧! µ⌫⌫ to the muonic measurement is not ex-
pected to improve in precision from the measurements
made at LEP under ideal conditions for ⌧ production
using Z ! ⌧⌧ , and hence is kept constant in the fu-
ture projections at 0.3%. The hadronic measurement
relies on external input for the branching fractions of
B

0
! D

⇤+
⇡
�
⇡
+
⇡
� and B

0
! D

⇤+
µ
�
⌫µ, which to-

gether contribute 4.8% to the systematic uncertainty.
The precision of the branching fraction of B0

! D
⇤
µ⌫

is not expected to change since an independent dataset
from the one used to measure R(D) and R(D⇤) is re-
quired. The BaBar measurement of the branching frac-
tion of B0

! D
⇤+

⇡
�
⇡
+
⇡
� reconstructs D

⇤+ using the
D

⇤+
! D

0
⇡
+ decay with D

0
! K

�
⇡
+ [53]. By adding

D
0
! K

�
⇡
+
⇡
+
⇡
�, it is expected that the uncertainty

can be reduced by 50% in 5 years, reducing the total
external systematic to 3.5% in Run III and beyond. The
predictions for the Belle II uncertainties are taken from
Ref. [28]. The values used are shown in Table 4 and the
projection of the future impact is shown in Fig. 7 using
the GammaCombo package [36]. This shows the signifi-
cance of the future world average by combining the un-
certainties from the SM predictions with the predicted
uncertainties of the Belle II and LHCb experiments us-
ing their final datasets (with 50 ab�1 at Belle II and
50 fb�1 at LHCb). It is clear that if the central val-
ues remain the same then the statistical power of the
Belle II and LHCb experiments will be more than suffi-
cient to reach 5�. An additional figure in Appendix Ap-
pendix A, Fig. 10, compares the current world average
with the current SM prediction, alongside the projec-
tions for Belle II and LHCb.

4 New physics in electroweak penguins

In this section, prospects for new physics searches in
b ! s transitions are studied under the SM hypothe-
sis as well as in several NP scenarios, with special at-
tention to present “anomalies”. The future projections
for Belle II are reported in Ref. [28]. The future un-
certainties for LHCb have been symmetrised where ap-
propriate and comprise the decrease of both statisti-
cal and systematic uncertainties as a consequence of
the increase in luminosity and the expected improve-
ment in trigger rates [27] for the milestones at 22 fb�1

and 50 fb�1 at centre-of-mass energies of
p
s = 14TeV.

For the branching fraction of B
0
s ! �� measured at
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FIG. 1. The form factor ratios R1(w) (left) and R2(w) (right) for the BGL (red long dashed), CLN (gray dashed), CLNnoR

(orange dotted) fits, and noHQS (purple dot-dot-dashed). The BGL, CLNnoR, and noHQS fits for R1 suggest a possibly large

violation of heavy quark symmetry, in conflict with lattice QCD predictions. The blue lines show our estimated bounds, based

on preliminary FNAL/MILC lattice results [29]. The black data point for R1(1) follows from the FNAL/MILC B ! D ` ⌫̄
result and heavy quark symmetry (see details in the text).

O(⇤QCD/mc,b, ↵s).
These aspects of the BGL, CLNnoR, and noHQS fits

are also in tension with lattice QCD results. Recently the
first preliminary lattice results were made public on the
B ! D⇤`⌫̄ form factors away from zero recoil, at finite
lattice spacing [29]. The results are fairly stable over a
range of lattice spacings. Assuming that the continuum
extrapolation will not introduce a sizable shift (the chiral
logs are not large [30, 31]) we can estimate the projec-
tions for the R1,2(w) form factor ratios. We approximate
the predicted form factors in a narrow range of w us-
ing a linear form, with a normalization and slope chosen
such that they encompass all reported lattice points and
uncertainties in Ref. [29]. At zero recoil we obtain the es-
timates R1(1) ' 1.5±0.2 and R2(1) ' 0.95±0.45, which
should be viewed as bounds on these values, as the actual
lattice QCD results will likely have smaller uncertainties.
Figure 1 shows R1,2(w) derived from the results of our
fit scenarios, as well as these lattice QCD constraints.

We can obtain another independent prediction for
R1(1) based on lattice QCD and heavy quark symmetry,
using the result for the B ! D `⌫̄ form factor [32]. Using
the O(⇤QCD/mc,b, ↵s) expressions [2], the f+ form factor
(see Eq. (2.1) in Ref. [32]) and the subleading Isgur-Wise
function ⌘ are related at zero recoil via

2
p
rD

1 + rD
f+(1) = 1 + ↵̂s

✓
CV1 + CV2

2rD
1 + rD

+ CV3

2

1 + rD

◆

� ("c � "b)
1� rD
1 + rD

[2 ⌘(1)� 1] + . . . , (8)

since other subleading Isgur-Wise functions enter sup-
pressed by w � 1. Here rD = mD/mB , "c,b = ⇤̄/mc,b

is treated as in Ref. [2], and hereafter the ellipsis de-
notes O("2c,b, ↵s "c,b, ↵2

s) higher order corrections. Us-

ing f+(w = 1) = 1.199 ± 0.010 [32] one finds ⌘(1) =
0.35 ± 0.10. The uncertainty in this relation and the
extracted value of ⌘(1) is dominated by O(⇤2

QCD/m
2
c)

corrections parametrized by several unknown matrix el-
ements [33], which we estimate with "2c ⇠ 0.05. Thus,

R1(1) = 1.34� 0.12 ⌘(1) + . . . = 1.30± 0.05 . (9)

(Recall that both the ↵s terms and a ⇤̄/(2mc) correction
enhance R1(1).) This estimate is shown with the black
dot and error bar in the left plot in Fig. 1. It shows good
consistency with our estimate from the preliminary direct
calculation of the B ! D⇤`⌫̄ form factors, as shown in
the region bounded by the blue curves.
Another clear way to see that the central values of the

BGL, CLNnoR, and noHQS fit results cannot be accom-
modated in HQET, without a breakdown of the expan-
sion, is by recalling [2] that besides Eq. (9), also

R2(1) = 0.98� 0.42 ⌘(1)� 0.54 �̂2(1) + . . . ,

R0
1(1) = �0.15 + 0.06 ⌘(1)� 0.12 ⌘0(1) + . . . , (10)

R0
2(1) = 0.01� 0.54 �̂0

2(1) + 0.21 ⌘(1)� 0.42 ⌘0(1) + . . . .

Here ⌘ and �̂2 are subleading Isgur-Wise functions.
Eqs. (9) and (10) have no solutions close to the BGL,
CLNnoR, or noHQS fit results in Table II with O(1) val-
ues for ⌘(1), ⌘0(1), �̂2(1), and �̂0

2(1).
Figure 2 shows d�/dw in the four fit scenarios, as well

as the Belle data [1]. The shaded bands show the uncer-
tainties of the CLN and noHQS fits, which are compara-
ble to the uncertainties of the other two fits. The BGL,
CLNnoR, and noHQS fits show larger rates near zero
and maximal recoil, in comparison to CLN. The CLN fit
shows a larger rate at intermediate values of w.
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Recently several papers extracted |Vcb| using the Belle measurement [1] of the exclusive B̄ ! D⇤`⌫̄
unfolded di↵erential decay rates, available for the first time. Depending on the theoretical inputs,

some of the fits yield higher |Vcb| values, compatible with those from inclusive semileptonic B decays.

Since these four fits use mostly the same data, if their correlations were close to 100%, the tension

between them would be over 5�. We determine the correlations, find that the tension between the

results is less than 3�, and explore what might lead to improving the consistency of the fits. We find

that fits that yield the higher values of |Vcb|, also suggest large violations of heavy quark symmetry.

These fits are also in tension with preliminary lattice QCD data on the form factors. Without

additional experimental data or lattice QCD input, there are no set of assumptions under which the

tension between exclusive and inclusive determinations of |Vcb| can be considered resolved.

I. INTRODUCTION

Using the unfolded B̄ ! D⇤` ⌫̄ spectra from Belle [1],
several theory papers [2–4] could perform fits to the data
for the first time, using di↵erent theoretical approaches.
Using the BGL parametrization [5, 6] for the B̄ ! D⇤` ⌫̄
form factors, a substantial shift in the extracted value of
|Vcb| was found [3, 4], compared to the Belle [1] analysis
using the CLN [7] parametrization,

|Vcb|CLN = (38.2± 1.5)⇥ 10�3 , [1] , (1a)

|Vcb|BGL = (41.7+2.0
�2.1)⇥ 10�3 , [3] , (1b)

|Vcb|BGL = (41.9+2.0
�1.9)⇥ 10�3 , [4] . (1c)

The main result in Ref. [1] was |Vcb|CLN = (37.4± 1.3)⇥
10�3, obtained from a fit inside the Belle framework, be-
fore unfolding. Only Eq. (1a) quoted in the Appendix
of [1] can be directly compared with Eqs. (1b) and (1c).
These papers, as well as this work, use the same fixed
value of F(1) [8] (see Eq. (4) below), so the di↵erences
in the extracted values of |Vcb| are due to the extrapola-
tions to zero recoil, where heavy quark symmetry gives
the strongest constraint on the rate [9–13]. Intriguingly,
the BGL fit results for |Vcb| are compatible with those
from inclusive B ! Xc`⌫̄ measurements [14]. If one as-
sumed, naively, a 100% correlation between the fits yield-
ing Eqs. (1a), (1b), and (1c), then the tension between
Eqs. (1a) and (1b) or between Eqs. (1a) and (1c) would
be above 5�.

The BGL [5, 6] fit implements constraints on the
B ! D⇤`⌫̄ form factors based on analyticity and uni-
tarity [15–17]. The CLN [7] fit imposes, in addition, con-
straints on the form factors from heavy quark symme-
try, and relies on QCD sum rule calculations [18–20] of
the subleading Isgur-Wise functions [13, 21], without ac-
counting for their uncertainties. Ref. [2] performed com-
bined fits to B̄ ! D⇤` ⌫̄ and B̄ ! D` ⌫̄, using predictions
of the heavy quark e↵ective theory (HQET) [22, 23], in-
cluding all O(⇤QCD/mc,b) uncertainties and their corre-

lations for the first time. The e↵ect of relaxing the QCD
sum rule inputs in the CLN fit was found to be small
compared to the di↵erence of the CLN and BGL results.
The recent papers using the BGL parametrization [3, 4]

assert that the higher values obtained for |Vcb| are due
to the too restrictive functional forms used in the CLN
fits. It was previously also noticed that the CLN gives
a poorer fit to the B ! D`⌫̄ data than BGL [24]. The
e↵ects on |Vcb| due to additional theoretical inputs were
also explored in Refs. [25, 26].
Based on our work in Ref. [2], we explore which di↵er-

ences between the BGL and CLN fits are responsible for
the di↵erent extracted |Vcb| values, study the consistency
and compatibility of the fits, and the significance of the
shift in the extracted value of |Vcb|.

II. DEFINITIONS

The B ! D⇤`⌫̄ form factors which occur in the stan-
dard model are defined as

hD⇤
| c̄�µb |Bi = i

p
mBmD⇤ hV "µ⌫↵� ✏⇤⌫v

0
↵v� ,

hD⇤
| c̄�µ�5b |Bi =

p
mBmD⇤

⇥
hA1(w + 1)✏⇤µ (2)

� hA2(✏
⇤
· v)vµ � hA3(✏

⇤
· v)v0µ

⇤
,

where v is the four-velocity of the B and v0 is that of the
D⇤. The form factors hV,A1,2,3 depend on w = v · v0 =
(m2

B +m2
D⇤ � q2)/(2mBmD⇤). Neglecting lepton masses,

only one linear combination of hA2 and hA3 is measur-
able. In the heavy quark limit, hA1 = hA3 = hV = ⇠
and hA2 = 0, where ⇠ is the Isgur-Wise function [9, 10].
Each of these form factors can be expanded in powers of
⇤QCD/mc,b and ↵s. It is convenient to parametrize de-
viations from the heavy quark limit via the form factor
ratios

R1(w) =
hV

hA1

, R2(w) =
hA3 + rD⇤hA2

hA1

, (3)
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form factors BGL CLN CLNnoR noHQS

axial / ✏⇤µ b0, b1 hA1(1), ⇢2D⇤ hA1(1), ⇢2D⇤ hA1(1), ⇢2D⇤ , cD⇤

vector a0, a1

⇢
R1(1), R2(1)

⇢
R1(1), R0

1(1)

R2(1), R0
2(1)

⇢
R1(1), R0

1(1)

R2(1), R0
2(1)F c1, c2

TABLE I. The fit parameters in the BGL, CLN, CLNnoR, and noHQS fits, and their relationships with the form factors.

which satisfy R1,2(w) = 1 + O(⇤QCD/mc,b, ↵s) in the
mc,b � ⇤QCD limit, and rD⇤ = mD⇤/mB .

The B ! D⇤`⌫̄ decay rate is given by

d�

dw
=

G2
F |Vcb|

2 m5
B

48⇡3
(w2

� 1)1/2 (w + 1)2 r3D⇤(1� rD⇤)2

⇥


1 +

4w

w + 1

1� 2wrD⇤ + r2D⇤

(1� rD⇤)2

�
F(w)2 , (4)

and the expression of F(w) in terms of the form factors
defined in Eq. (2) is standard in the literature [27]. In
the heavy quark limit, F(w) = ⇠(w). We further denote

⇢2D⇤ = �
1

hA1(1)

dhA1(w)

dw

����
w=1

, (5)

which is a physical fit parameter in the CLN approach,
and is a derived quantity in the other fits.

III. NEW FITS, LATTICE QCD, AND THEIR
TENSIONS

The constraints built into the CLN fit can be relaxed
by ignoring the QCD sum rule inputs and the condition
R1,2(w) = 1 + O(⇤QCD/mc,b, ↵s) following from heavy
quark symmetry. (Ref. [2] showed that only ignoring the
QCD sum rule inputs, and using only w = 1 lattice QCD
data, leaves |Vcb| = (38.8± 1.2)⇥ 10�3.) Thus, we write

R1(w) = R1(1) + (w � 1)R0
1(1) ,

R2(w) = R2(1) + (w � 1)R0
2(1) , (6)

and treat R1,2(1) and R0
1,2(1) as fit parameters. We refer

to this fit as “CLNnoR”. It has the same number of fit
parameters as BGL, and allows O(1) heavy quark sym-
metry violation, but the constraints on the form factors
are nevertheless somewhat di↵erent than in BGL.

While this CLNnoR fit is a simple modification of the
CLN fit widely used by BaBar and Belle, it still re-
lies on heavy quark symmetry and model-dependent in-
put on subleading Isgur-Wise functions. The reason is
that both CLN and CLNnoR use a cubic polynomial in
z = (

p
w + 1 �

p
2)/(

p
w + 1 +

p
2) to parametrize the

form factor hA1 , with its four coe�cients determined by
two parameters, hA1(1) and ⇢2D⇤ , derived from unitarity
constraints on the B ! D form factor. Therefore, we
also consider a “noHQS” scenario, parametrizing hA1 by
a quadratic polynomial in z, with unconstrained coe�-
cients,

hA1(w) = hA1(1)
⇥
1� 8⇢2D⇤z + (53. cD⇤ � 15.)z2

⇤
, (7)

CLN CLNnoR noHQS BGL

|Vcb|⇥10
3

38.2± 1.5 41.5± 1.9 41.8± 1.9 41.5± 1.8

⇢2D⇤ 1.17± 0.15 1.6± 0.2 1.8± 0.4 1.54± 0.06

cD⇤ ⇢2D⇤ ⇢2D⇤ 2.4± 1.6 fixed: 15./53.

R1(1) 1.39± 0.09 0.36± 0.35 0.48± 0.48 0.45± 0.28

R2(1) 0.91± 0.08 1.10± 0.19 0.79± 0.36 1.00± 0.18

R0
1(1) fixed: �0.12 5.1± 1.8 4.3± 2.6 4.2± 1.2

R0
2(1) fixed: 0.11 �0.89± 0.61 0.25± 1.3 �0.53± 0.42

�2
/ ndf 35.2 / 36 27.9 / 34 27.6 / 33 27.7 / 34

TABLE II. Summary of CLN, CLNnoR, noHQS, and BGL fit

results.

|Vcb|CLN |Vcb|CLNnoR |Vcb|noHQS |Vcb|BGL

|Vcb|CLN 1. 0.75 0.69 0.76

|Vcb|CLNnoR 1. 0.95 0.97

|Vcb|noHQS 1. 0.97

|Vcb|BGL 1.

TABLE III. Correlation matrix of the four extracted |Vcb| val-
ues. For BGL the outer functions of Ref. [4] were used. All

results are derived by bootstrapping [28] the unfolded distri-

butions of Ref. [1] using the published covariance.

keeping the same prefactors as in CLN, to permit com-
parison between ⇢2D⇤ and cD⇤ (in the CLN fit cD⇤ = ⇢2D⇤).
The fit parameters in the BGL, CLN, CLNnoR, and

noHQS fits are summarized in Table I. The results of
these fits for |Vcb|, ⇢2D⇤ , cD⇤ , R1,2(1), and R0

1,2(1) are
shown in Table II. The BGL, CLNnoR, and noHQS re-
sults are consistent with each other, including the un-
certainties, and the fit quality. The correlations of these
four fit results for |Vcb| are shown in Table III and have
been derived by creating a bootstrapped [28] ensemble of
the unfolded distributions of Ref. [1], using the published
covariance. Each set of generated decay distributions in
the ensemble is fitted with the BGL, CLN, CLNnoR, and
noHQS parametrizations, and the produced ensemble of
|Vcb| values is used to estimate the covariance between
them. The correlation of the CLN fit with either BGL,
CLNnoR, or noHQS is substantially below 100%. This
reduces the tension between these fits to below 3�.
As soon as R0

1,2(1) are not constrained to their values
imposed in the CLN framework, large deviations from
those constraints are observed. The BGL, CLNnoR, and
noHQS results favor a large value for R0

1(1), in tension
with the heavy quark symmetry prediction, R0

1(1) =

do satisfy in heavy quark limit

Some tensions 
with BGL for R1
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