Higgs Physics @ ILC250

11th Annual Meeting of the Helmholtz Alliance "Physics at the Terascale"

Hamburg, 28-11-2017

Yan Wang (DESY, IHEP)

Higgs itself is the New Physics

The Higgs boson is found at the LHC in 2012, but it was just a beginning

Higgs not only the first elementary spin-0 particle, but also new interactions, involves two New Interactions

- > Higgs Yukawa coupling
- > Higgs self-interaction
- **Related to**
- > mass puzzle
 - V W,Z masses --- SM Higgs mechanism?
 - ✓ fermion mass --- why large hierarchy?
 - v higgs boson mass --- naturalness?
- > vacuum stability? vacuum energy?
- inflation --- higgs involved inflation?
- > dark matters --- higgs portal?

Precision Measurements may open the gate of NP world!

Н

ILC

The International Linear Collider

ILC properties:

- polarized beams (e⁻: ∓0.8, e⁺: ∓0.3)
- center-of-mass energy = 250 GeV for the first stage
- Energy-upgrade capability
 - --- 350 GeV, 500 GeV, even 1 TeV

ILC Running Scenario:

one scenario for 22 years

- 2/ab @ 250 GeV
- 0.2/ab @ 350 GeV
- 4/ab @ 500 GeV

if possible 1 TeV upgrade ...

Integrated Luminosities [fb]

ILC

The International Linear Collider

ILC properties:

- center-of-mass energy = 250 GeV for the first stage
- Energy-upgrade capability
 - --- 350 GeV, 500 GeV, even 1 TeV
- polarized beams (e⁻: ∓0.8, e⁺: ∓0.3)

ILC Running Scenario:

new scenario for 22 years

- 2/ab @ 250 GeV
- 0.2/ab @ 350 GeV
- 4/ab @ 500 GeV

if possible 1 TeV upgrade ...

Waiting for finally decision --- in 2018!

Detector Concept at the ILC

ILD (International Large Detector)

□ Tracker:

Vertex, TPC

□ Calorimeter:

ECAL, HCAL

- □ 3.5T magnetic field
- Yoke for muon, Forward system

Requirements:

- > Impact parameter resolution $\sigma_{r\phi} < 5 \oplus 10/ (p^* \sin^{3/2} \theta) \mu m$
- > Momentum resolution

 $\sigma_{1/pt} < 2*10^{-5} \text{ GeV}^{-1}$

Energy resolution

 $\sigma_{\text{E}}/\text{E}=3-4\%$

Higgs production

- clean environment, known initial state
- @ILC250, Higgs-strahlung dominant,

better to measure σ_{zh}

- ✓ larger cross section
- less beamstrahlung effect
- measure σ_{zh} model-independently
 - > the key to determinate absolute couplings!
- recoil technique

$$M_{rec}^2 = (\sqrt{s} - E_{l^+l^-})^2 - |\vec{p_{l^+l^-}}|^2$$

No Higgs reconstruction required
 ---model-independent and precise

measurement

Higgs cross section & mass

Key measurement model independent & accurate the expected precisions

$$\frac{\Delta \sigma_{Zh}}{\sigma_{Zh}} = 0.8\%, \frac{\Delta g_{hZZ}}{g_{hZZ}} = 0.4\%$$

relative bias of the different Higgs decay modes:

μ+μ-Η < 0.1% e+e-Η < 0.2%

δm_h~O(0.2%) @LHC

DESY.

already accuracy, but not enough.

e.g. $h \rightarrow ZZ^{*,} h \rightarrow WW^{*}$ partial width sensitive to m_{h} due to phase space! relative errors for effective couplings are

$$\delta_W = 6.9 \cdot \delta m_h, \quad \delta_Z = 7.7 \cdot \delta m_h,$$
$$\delta_{Z/W} \sim O(1\%)$$

(-+)(+-) initial polarization states @ 250GeV + 2/ab

Higgs decay branching ratio

with recoil technique

- > σ_{zh} ·BR for various decay modes
- > $BR_{bb} \sim O(0.89\%)$, $BR_{\tau\tau} \sim O(1.4\%) BR_{cc} \sim O(3.2\%)$, $BR_{gg} \sim O(2.7\%)$
- > $BR_{ww} \sim O(1.9\%)$, $BR_{zz} \sim O(6.7\%)$, $BR_{\gamma\gamma} \sim O(13\%)$, $BR_{\mu\mu} \sim O(27\%)$
- ▷ BR_{inv}~ O(0.32%)

in **ĸ**-framework

κ-framework is model dependent

$$\kappa_Z {m_Z^2 \over v} Z_\mu Z^\mu H$$

missing in k-framework

$$\delta \mathcal{L} = \frac{m_Z^2}{v} (1 + \eta_Z) h Z_\mu Z^\mu + \zeta_Z \frac{1}{v} h Z_{\mu\nu} Z^{\mu\nu}$$
$$\prod_{\Gamma(h \to ZZ^*)/SM} = (1 + 2\eta_Z - 0.50\zeta_Z)$$

$$\sigma(e^+e^- \to Zh)/SM = (1 + 2\eta_Z + 5.7\zeta_Z)$$
.

So we change to EFT framework

Higgs Effective Theory: Definition

EFT-based framework

- > most general set of SU(3)xSU(2)xU(1) invariant dim-6 operators
- >10+7 parameters --- available at the ILC
- > model independent
- > the best way to parametrize deviations from the SM in Higgs physics
- > couplings extracted by global fit
- > combining channels
 - $\checkmark e^+e^- \rightarrow Zh, e^+e^- \rightarrow WW,$
 - ✓ EW precise measurement, TGC …

Higgs Decay Channel and Couplings

- Compared to HL-LHC, ILC250 provide quantitative and qualitative improvement.
 - O(1%) for many couplings
 - model independent
 - measurement for 2nd generation
- ILC500 improves a factor of 2

2/ab 250 GeV, (-+; +-; --; ++) = (45%; 45%; 5%; 5%) 4/ab 500 GeV, (-+; +-; --; ++) = (40%; 40%; 10%; 10%)

ILC TDR Volume 2: Physics, PRD 90, 095017 (2014)

 $r_{bb} = \frac{\Gamma(h \to b\bar{b})}{\Gamma(h \to b\bar{b})}$

 r_{bb}

New Physics model discrimination

New physics model discrimination

combine Higgs and EW (TGC) measurement

assume no new physics associated with EWSB is found at the HL-LHC

maximum deviations for higgs coupling in different models

	$\Delta g(hVV)$	$\Delta g(ht\overline{t})$	$\Delta g(hb\overline{b})$
Composite Higgs	10%	tens of $\%$	tens of $\%$
Minimal Supersymmetry	< 1%	3%	tens of $\%$
Mixed-in Singlet	6%	6%	6%

illustrates the ability of ILC measurements to distinguish the Higgs boson couplings in these models

Higgs CP

Higgs CP --- Ηττ channel

fermion must be unstable kinematics of fermion's daughter → polarisation of fermion→ CP of higgs and coupling

τ best for fermions
> decays in detector
> no QCD between taus

CP $\delta \psi \sim 3.8^{\circ}$

Direct search --- light higgs

DESY. | Higgs Physics at ILC | Yan Wang | 11/28/2017

- Many BSM models favor a low mass higgs (2HDM, NMSSM)
- LEP and LHC constrains --coupling strongly reduced!
- A model-independent analysis with light higgs recoiling against Z
- mass range [10, 125) GeV with full ILD detector simulation @ILC250 is ongoing
- five benchmark point for illustration m_h=30, 50, 70, 90, 115 GeV
- spliting higgs decay mode into visible and invisible will lead to a better results

ILC upgrade

@ILC 500/550 GeV, WW-fusion dominant

H³ ~ O(27%) ~ 3σ

WW-fusion cross section Higgs width

ttH ~O(3% - 6%)

improve precision of Higgs coupling by a factor of 2

Summary

- Higgs properties is the key to many essential physics questions.
- ILC with polarised beams offer supremely accurate measurements.
- Higgs gauge & Yukawa couplings & self-interaction model-independent measurement.

HZZ, HWW, Hγγ, Hgg, Hbb, Hττ ... reach O(1%).

- Discriminate BSM models.
- Direct search for new light higgs bosons.
- ILC is upgradable, 250 GeV is a first step!
- ILC should be treated as the priority task and to be constructed as soon as possible!

HELMHOLTZ RESEARCH FOR GRAND CHALLENGES

Higgs Decay Channel and Couplings

	ILC250		+ILC500	
	κ fit	EFT fit	κ fit	EFT fit
g(hbb)	1.8	1.1	0.60	0.58
g(hcc)	2.4	1.9	1.2	1.2
g(hgg)	2.2	1.7	0.97	0.95
g(hWW)	1.8	0.67	0.40	0.34
g(h au au)	1.9	1.2	0.80	0.74
g(hZZ)	0.38	0.68	0.30	0.35
$g(h\gamma\gamma)$	1.1	1.2	1.0	1.0
$g(h\mu\mu)$	5.6	5.6	5.1	5.1
$g(h\gamma Z)$	16	6.6	16	2.6
g(hbb)/g(hWW)	0.88	0.86	0.47	0.46
g(h au au)/g(hWW)	1.0	1.0	0.65	0.65
g(hWW)/g(hZZ)	1.7	0.07	0.26	0.05
Γ_h	3.9	2.5	1.7	1.6
$BR(h \to inv)$	0.32	0.32	0.29	0.29
$BR(h \rightarrow other)$	1.6	1.6	1.3	1.2

arXiv:1710.07621

Major physics processes @ILC

Energy	Reaction	Physics Goal	Polarization
91 GeV	$e^+e^- \rightarrow Z$	ultra-precision electroweak	Α
160 GeV	$e^+e^- \rightarrow WW$	ultra-precision W mass	Н
250 GeV	$e^+e^- \rightarrow Zh$	precision Higgs couplings	н
350-400 GeV	$e^+e^- \rightarrow t\bar{t}$	top quark mass and couplings	Α
	$e^+e^- \rightarrow WW$	precision W couplings	н
	$e^+e^- ightarrow u \overline{ u} h$	precision Higgs couplings	L
500 GeV	$e^+e^- ightarrow f\overline{f}$	precision search for Z'	Α
	$e^+e^- ightarrow t\bar{t}h$	Higgs coupling to top	н
	$e^+e^- \rightarrow Zhh$	Higgs self-coupling	н
	$e^+e^- ightarrow ilde{\chi} ilde{\chi}$	search for supersymmetry	В
	$e^+e^- \rightarrow AH, H^+H^-$	search for extended Higgs states	В
700–1000 GeV	$e^+e^- ightarrow u\overline{ u}hh$	Higgs self-coupling	L
	$e^+e^- ightarrow u\overline{ u}VV$	composite Higgs sector	L
	$e^+e^- ightarrow u \overline{ u} t \overline{t}$	composite Higgs and top	L
×	$e^+e^- \rightarrow \tilde{t}\tilde{t}^*$	search for supersymmetry	В

Higgs CP Ηττ detail

θ±, φ±direction of h± with respect to τ- boost in τ± rest frame $\Delta φ$ angle between polarimeter planes ψ_{CP} CP mixing angle we want to measure

HHH coupling

non-trivial relations between cross sections and $\boldsymbol{\lambda}$

@ILC500, ZHH > Observation of HH with 8σ > extract $\delta \lambda_{SM} \sim O(27\%)$ @ILC1 TeV, 4ab-1, vvHH > $\delta \lambda_{SM} = 10\%$

precision depends strongly on actual value of λ

many BSM models will lead to a large λ O(100%) even if other couplings are SM-like [Phys.Lett. B558 (2003) 157-164]

electroweak baryogenesis requires $\lambda > 1.2 \lambda_{\text{SM}}$

HELMHOLTZ RESEARCH FOR GRAND CHALLENGES

Major physics processes @ILC

Energy	Reaction	Physics Goal	Polarization
91 GeV	$e^+e^- \rightarrow Z$	ultra-precision electroweak	Α
160 GeV	$e^+e^- \rightarrow WW$	ultra-precision W mass	Н
250 GeV	$e^+e^- \rightarrow Zh$	precision Higgs couplings	н
350-400 GeV	$e^+e^- ightarrow t\bar{t}$	top quark mass and couplings	Α
	$e^+e^- \rightarrow WW$	precision W couplings	н
	$e^+e^- ightarrow u\overline{ u}h$	precision Higgs couplings	L
500 GeV	$e^+e^- ightarrow f\overline{f}$	precision search for Z'	Α
	$e^+e^- \rightarrow t\bar{t}h$	Higgs coupling to top	н
	$e^+e^- \rightarrow Zhh$	Higgs self-coupling	н
	$e^+e^- ightarrow \tilde{\chi} \tilde{\chi}$	search for supersymmetry	B
	$e^+e^- \rightarrow AH, H^+H^-$	search for extended Higgs states	В
700–1000 GeV	$e^+e^- \rightarrow \nu \overline{\nu} hh$	Higgs self-coupling	L
	$e^+e^- ightarrow u\overline{ u}VV$	composite Higgs sector	L
	$e^+e^- ightarrow u \overline{ u} t \overline{t}$	composite Higgs and top	L
2	$e^+e^- \rightarrow \tilde{t}\tilde{t}^*$	search for supersymmetry	В

10 dim-6 CP-conserving operator

$$\begin{split} \Delta \mathcal{L} &= \frac{c_H}{2v^2} \partial^{\mu} (\Phi^{\dagger} \Phi) \partial_{\mu} (\Phi^{\dagger} \Phi) + \frac{c_T}{2v^2} (\Phi^{\dagger} \overleftrightarrow{D}^{\mu} \Phi) (\Phi^{\dagger} \overleftrightarrow{D}_{\mu} \Phi) - \frac{c_6 \lambda}{v^2} (\Phi^{\dagger} \Phi)^3 \\ &+ \frac{g^2 c_{WW}}{m_W^2} \Phi^{\dagger} \Phi W^a_{\mu\nu} W^{a\mu\nu} + \frac{4gg' c_{WB}}{m_W^2} \Phi^{\dagger} t^a \Phi W^a_{\mu\nu} B^{\mu\nu} \\ &+ \frac{g'^2 c_{BB}}{m_W^2} \Phi^{\dagger} \Phi B_{\mu\nu} B^{\mu\nu} + \frac{g^3 c_{3W}}{m_W^2} \epsilon_{abc} W^a_{\mu\nu} W^{b\nu}{}_{\rho} W^{c\rho\mu} \\ &+ i \frac{c_{HL}}{v^2} (\Phi^{\dagger} \overleftrightarrow{D}^{\mu} \Phi) (\overline{L} \gamma_{\mu} L) + 4i \frac{c'_{HL}}{v^2} (\Phi^{\dagger} t^a \overleftrightarrow{D}^{\mu} \Phi) (\overline{L} \gamma_{\mu} t^a L) \\ &+ i \frac{c_{HE}}{v^2} (\Phi^{\dagger} \overleftrightarrow{D}^{\mu} \Phi) (\overline{e} \gamma_{\mu} e) \;. \end{split}$$

4 dim-6

$$\begin{split} \Delta \mathcal{L}_{CP} &= + \frac{g^2 \tilde{c}_{WW}}{m_W^2} \Phi^{\dagger} \Phi W^a_{\mu\nu} \widetilde{W}^{a\mu\nu} + \frac{4gg' \tilde{c}_{WB}}{m_W^2} \Phi^{\dagger} t^a \Phi W^a_{\mu\nu} \widetilde{B}^{\mu\nu} \\ &+ \frac{g'^2 \tilde{c}_{BB}}{m_W^2} \Phi^{\dagger} \Phi B_{\mu\nu} \widetilde{B}^{\mu\nu} + \frac{g^3 \tilde{c}_{3W}}{m_W^2} \epsilon_{abc} W^a_{\mu\nu} W^{b\nu}{}_{\rho} \widetilde{W}^{c\rho\mu} \end{split}$$

HELMHOLTZ RESEARCH FOR GRAND CHALLENGES

Higgs related dim-6 operators

Higgs	EW Gauge Bosons	Fermions
$\mathcal{O}_{H}\!=\frac{1}{2}(\partial_{\mu} H ^{2})^{2}$	$\mathcal{O}_{WW} = g^2 H ^2 W^a_{\mu\nu} W^{a\mu\nu}$	$\mathcal{O}_{L}^{(3)} \!= (i H^{\dagger} \sigma^{a} \overset{\leftrightarrow}{D}_{\mu} H) (\overline{\Psi}_{L} \gamma^{\mu} \sigma^{a} \Psi_{L})$
$\mathcal{O}_T \!= \frac{1}{2} (H^\dagger \overset{\leftrightarrow}{D}_\mu H)^2$	$\mathcal{O}_{BB} = g^2 H ^2 B_{\mu\nu} B^{\mu\nu}$	$\mathcal{O}_{LL}^{(3)} \!= (\overline{\Psi}_L \gamma_\mu \sigma^a \Psi_L) (\overline{\Psi}_L \gamma^\mu \sigma^a \Psi_L)$
	$\mathcal{O}_{WB} \!= gg' H^\dagger \sigma^a H W^a_{\mu\nu} B^{\mu\nu}$	$\mathcal{O}_L \!= (i H^\dagger \overset{\leftrightarrow}{D}_\mu H) (\overline{\Psi}_L \gamma^\mu \Psi_L)$
Gluon	$\mathcal{O}_{HW} \!= ig(D^{\mu}H)^{\dagger}\sigma^{a}(D^{\nu}H)W^{a}_{\mu\nu}$	$\mathcal{O}_{R}^{} \!= (iH^{\dagger}\!\overset{\leftrightarrow}{D}_{\mu}H)(\overline{\psi}_{R}^{}\gamma^{\mu}\psi_{R}^{})$
$\overline{\mathcal{O}_g \!= g_s^2 H ^2 G^a_{\mu\nu} G^{a\mu\nu}}$	$\mathcal{O}_{HB} \!= ig'(D^{\mu}H)^{\dagger}(D^{\nu}H)B_{\mu\nu}$	$\mathcal{O}_y^u = H ^2 \overline{\Psi}_L^q \tilde{H} u_R$
	$\mathcal{O}_W = \frac{ig}{2} (H^\dagger \! \sigma^a \! \stackrel{\leftrightarrow}{D}_\mu H) D_\nu W^{a \mu \nu}$	$\mathcal{O}_y^d = H ^2 \overline{\Psi}_L^q H d_R$
	$\mathcal{O}_B = \frac{ig'}{2} (H^\dagger \overset{\leftrightarrow}{D}_\mu H) D_\nu B^{\mu\nu}$	$\mathcal{O}_y^\ell = H ^2 \overline{\Psi}_L^\ell H \ell_R$

Table 1. List of dimension-6 effective operators for the present study.

