

Measurement of the H $\rightarrow \tau \tau$ coupling exploiting tau lepton decay mode classification in the semi-leptonic final state at ATLAS

Lara Schildgen

Terascale Alliance Workshop Hamburg 28th November 2017

Introduction

 New tuning of tau decay mode classification algorithm for run 2

 Do we gain sensitivity by splitting the signal regions in decay modes?

Particle Flow

Idea: reconstruct all decay products to determine decay mode

- use tracks to identify $\pi^{+/-}$
- use energy deposition in had calo and tracking detector to determine the $\pi^{\text{+/-}}$ energy in the EM calo
- subtract the $\pi^{+/-}$ energy from matched cluster in the EM calo
- identify neutral particles from remnant clusters
- use strip-layer information to identify neutral pions (2 photon shots)

Tau Substructure Reconstruction

Particle flow algorithm

measure tau 4-momentum with tracking detector instead of using calorimeter information only Paper on tau substructure reconstruction (Eur. Phys. J. C. (2016) 76:295)

Most pions from taus have pT < 100 GeV → Tracker energy resolution is superior in low pT regime

PanTau: Decay mode classification algorithm & 4-momentum builder

- improvement of energy and spatial resolution
- information on tau decay mode

Tau Decay Mode Classification

Extended PanTau decay modes:

Classify τ decay mode using

- decay kinematics
- number of photons

Improving decay mode classification with machine learning techniques in Boosted Decision Trees (BDT)

Resulting information for analyses:

- decay mode
- preliminary tau 4-vector = 4-vectors of charged + neutral pions

TPT

PanTau Performance

Increase of decay mode classification efficiency after re-training of the three PanTau BDTs

Using decay mode info in $H \rightarrow tau tau$

adopted 4 signal regions from lep-had channel

Setup

- using ntuples from 03/2017 production, filtered samples, Sherpa 2.21 Z samples, cross sections updated, no scale-factors
- Fakes estimate by Same Sign method (will switch to Fake Factors method)
 Decay mode split fake factors required
- considered systematics:

weight systematics TauJetBDTmedium TauTESDetector HadTauEleOLR VeryLooseLlhEleOLR CentralJetsGlobalEff/Ineff ForwardJetsGlobalEff/Ineff JetsGlobalEff/IneffMVX

tree systematics

TAUS_TRUEHADTAU_SME_TES_DETECTOR TAUS_TRUEHADTAU_SME_TES_INSITU TAUS_TRUEHADTAU_SME_TES_MODEL systematic uncertainties on jet BDT score, tau energy scale, electron overlap removal, global jet efficiencies

Boosted low

Terascale Alliance Workshop 2017

Boosted low

Comparison of Higgs MMC mass in 1p0n and 3pXn modes

1p0n

3pXn

- Large Fakes contribution in decay modes with neutral constituents
- Study possibility to loosen kinematic cuts in low Fakes regions for higher signal significance

Boosted low

Terascale Alliance Workshop 2017

VBF loose

Terascale Alliance Workshop 2017

Signal Significance

Summary of s/\sqrt{b} ratios (stats-only significance) for all signal regions in MMC mass window 110-140 GeV

Decay mode specific and combined (quadratic sum)

rogion	S/\sqrt{B}						
region	inclusive	1 p0 n	1p1n	1pXn	3p0n	3pXn	combined
ggF high	2.55	1.31	1.51	0.77	1.31	0.60	2.58
ggF low	1.41	0.85	0.84	0.39	0.72	0.24	1.47
VBF tight	2.71	1.30	1.96	1.22	1.15	0.37	2.90
VBF loose	0.58	0.37	0.33	0.20	0.30	0.11	0.62

Increased signal significance by combining the SRs which were split in decay modes

Signal Significance

How can we continue from here to increase the signal significance?

- Find selection cuts which can be loosened in the pure decay mode regions to increase signal while keeping background moderate
- One of these requirements: Tau ID
- Another one: missing transverse energy

Tau ID study

Here: boosted low region with medium TauID Study effect of looser Tau ID in decay mode splitting

Tau ID study

Here: boosted low region with loose TauID

Increase of Fakes especially in decay modes with large number of neutrals

Tau ID study

Looser Tau ID gives larger statistics

Signal events in mass window 110 < m < 140 GeV:

Boosted low	Tau ID				
region	medium	loose			
inclusive	44.62	50.81			
1p0n	11.03	11.69			
1p1n	16.66	18.84			
1pXn	4.71	5.46			
3p0n	9.95	11.47			
3pXn	2.27	3.35			

more Signal events with loose Tau ID

→ results in better s/\sqrt{b} ratio (reduction of TES uncertainty, but additional Tau ID uncertainty)

Exploit this in the pure decay modes (1p0n, 1p1n)

Missing transverse energy

High boosted region

Missing transverse energy

Low boosted region

Outlook

- Replace SS Fakes estimate by Fake Factors method (decay mode splitting)
- Switch to newest ntuples
- Include further systematics
- Split decay modes in additional variables (lep & tau & jet pT, Higgs pT, m_jj etc.)
- Find kinematic cuts that can be loosened in decay mode splitting for more signal efficiency
- Check control regions
- Split in electron/muon channel
- Future ideas: BDT for sig vs. bkg classification in split decay modes

Summary

- Tau substructure reconstruction improves energy and spatial tau resolution
- PanTau: Tau decay mode classification and 4-momentum builder algorithm with improved decay mode classification efficiency in run-2

 Gain sensitivity in H → tau tau by splitting in tau decay modes

Thanks for your attention

Questions?

Bonus

VBF tight

Terascale Alliance Workshop 2017

Boosted high

Terascale Alliance Workshop 2017

Signal Significance

medium Tau ID:

rogion	S/\sqrt{B}						
region	inclusive	1 p0 n	1 p 1 n	1pXn	3p0n	3pXn	combined
ggF high	2.55	1.31	1.51	0.77	1.31	0.60	2.58
ggF low	1.41	0.85	0.84	0.39	0.72	0.24	1.47
VBF tight	2.71	1.30	1.96	1.22	1.15	0.37	2.90
VBF loose	0.58	0.37	0.33	0.20	0.30	0.11	0.62

loose Tau ID:

rogion	S/\sqrt{B}						
region	inclusive	1 p0 n	1 p 1 n	1pXn	3p0n	3pXn	combined
ggF high	2.60	1.32	1.51	0.80	1.35	0.67	2.63
ggF low	1.37	0.84	0.84	0.39	0.66	0.26	1.43
VBF tight	2.58	1.36	1.75	1.06	1.01	0.54	2.71
VBF loose	0.57	0.31	0.32	0.22	0.29	0.13	0.59

Missing transverse energy

VBF tight region

Lara Schildgen

Missing transverse energy

VBF loose region

PanTau Migration Matrix

before PanTau BDT retraining 73.8 % efficiency

after PanTau BDT retraining 74.2 % efficiency

- evaluation on Ztautau sample
- overall increase of diagonal efficiency through new PanTau BDT re-training

Event Selection

$H \rightarrow tau tau coupling measurement$

The Tau Lepton

 $\bar{\mu}_{,\mu}$

 $\bar{v}_e, \bar{v}_\mu, \bar{u}$

- heaviest lepton $m_{\tau} = 1777 \text{ MeV}$
- extreme short lifetime of 290 · 10⁻¹⁵ s
- decay length of 87 μm

- $\mu^{\pm} \nu_{\mu} \nu_{\tau}$ $e^{\pm} \nu_{\mu} \nu_{\tau}$ $\pi^{\pm} \nu_{\tau}$ $\rho^{\pm} (\longrightarrow \pi^{\pm} \pi^{0}) \nu_{\tau}$
- $a_1 (\rightarrow \pi^{\pm} \pi^{\circ} \pi^{\circ}) v_{\tau}$
- other 1-prong
- 3-prong decays
- other (hadronic)

Terascale Alliance Workshop 2017