

$H \to \tau \tau$ coupling measurement in the lepton-hadron final state using the ATLAS detector

Antonio De Maria Supervised by: Arnulf Quadt II. Physikalisches Institut

Special thanks to all the $H \rightarrow \tau \tau \rightarrow$ lep-had analysis team

Terascale meeting, DESY Higgs session

Bundesministerium für Bildung und Forschung

$H \rightarrow \tau \tau$ search motivation

• In the SM, $H \rightarrow \tau \tau$ is currently the only accessible decay at LHC to establish Higgs-Yukawa coupling to leptons

https://twiki.cern.ch/twiki/bin/view/LHCPhysics/LHCHXSWG

Run 2 coupling measurement

- Cut-based analysis using 2015+2016 datasets collected at \sqrt{s} = 13 TeV
 - Multivariate analysis ongoing in parallel to increase final sensitivity
- Harmonisation across different channels to use similar signal regions and similar object definitions

	lep-lep lep-had had-had		
VBF region	$p_{\mathcal{T}}^{\textit{lead.jet}} > 40$ GeV (70 GeV for had-had), $p_{\mathcal{T}}^{\textit{sublead.jet}} > 30$ GeV		
	$\Delta\eta$ (jets) $>$ 3 in opp. hemisphere, M (jets) $>$ 400 GeV		
Boosted region	Fail VBF region, $p_T^H > 100 \text{ GeV}$		

• Combined fit on the di-tau mass (*MMC*) based on Maximum Likelihood Estimation (*MLE*) to determine the signal strength

$$\mu = \frac{\sigma \times BR}{(\sigma \times BR)_{SM}}$$

Introduction to MMC

- Reconstruction of the mass of a resonance decaying into a pair of tau leptons is difficult because of the neutrinos in final state
- Missing Mass Calculator (MMC):
 - The orientations of the neutrinos and other decay products must be consistent with the mass and decay kinematics
 - Result is achieved by minimising a likelihood in the kinematically allowed phase space region (http://arxiv.org/pdf/1012.4686.pdf)
- Succesfully used in Run1, but it needs and re-tuned for Run2 due to ATLAS detector upgrades

Event selection for the $\tau_{lep} + \tau_{had}$ final state

• Preselection cuts:

- Trigger: Single Lepton Trigger (SLT) + Tau Lepton Trigger (TLT) combination
- Lepton features:
 - Gradient isolation
 - medium ID quality
 - $p_T > 14.7$ GeV (muon), 18 GeV (electron)
- Hadronic tau features:
 - medium ID quality
 - $|\eta| <$ 2.4, |q| = 1, p_T > 30 GeV
- Opposite sign between lepton and hadronic tau
- No b-jets
- *M_T*(*lep*, *MET*) < 70 GeV
- *MET* > 20 GeV

- Control region (CR) definitions:
 - QCD CR: invert cut on lep. isolation
 - W CR: invert cut on $M_T(lep, MET)$
 - Top CR: invert cut on b-jets and M_T(lep, MET) > 40 GeV

- Possible sources of fakes for mis-reconstructed electrons or muons (leptonic side):
 - no data driven strategy at the moment to estimate this low contribution
- Possible sources of fakes for mis-reconstructed hadronic taus (hadronic side)
 - Contribution from electrons strongly reduced using:
 - Geometrical overlap removal (ORL)
 - Electron Likelihood rejection (LLH)
 - Electron BDT rejection
 - Contribution from jets estimated using two techniques:
 - OS-SS method (backup)
 - Fake Factor method (default)

Fake Factor method

- Data driven technique
- Consider events where a tau is faked by a jet; invert tau ID (anti-tau)

•
$$N_{jet \rightarrow \tau} = (N_{Data}^{fail,SR} - N_{MC,nojet \rightarrow \tau}^{fail,SR}) * FF_{SR}$$

- Fakes normalisation is obtained from the transfer factor (FF_{SR}) from anti-tau region to signal region
- Shape of *Fakes* are taken from anti-tau region in Data

Detector level plots at preselection

Overall, good Data/MC modelling for key-variables in the analysis

Signal regions for cut-based analysis

- VBF region
 - $p_T^{lead.jet} > 40 \text{ GeV}$
 - $p_T^{sublead.jet} > 30 \text{ GeV}$
 - $\Delta \eta$ (jets) > 3, opposite hemisphere
 - Jets visible mass $(M_{jj}) > 400$ GeV
 - $min(\eta^{jet}) < \eta^{lep/tau}$ and $max(\eta^{jet}) > \eta^{lep/tau}$
 - *MET* > 20 GeV
 - $\Delta R(l, \tau) < 3$ and $\Delta \eta(l, \tau) < 1.5$
- Split in Loose and Tight regions based on M_{jj}
- Boosted region:
 - Fail VBF region requirements
 - $p_T^H > 100 \text{ GeV}$
 - *MET* > 20 GeV
 - tau $p_T > 30 \text{ GeV}$
 - $\Delta R(l, \tau) < 2.5$ and $\Delta \eta(l, \tau) < 1.5$
- Split in *High* and *Low* regions based on p_T^H

VBF Higgs production

Detector level plots in signal regions

• Splitting in sub-regions will increase significance in the fit

Fit model for the $\tau_{lep} + \tau_{had}$ final state

- Boosted (VBF) Top CR : region defined using Boost (VBF) selection and inverting cut on b-jets and M_T(lep, MET) > 40 GeV
- Boosted (VBF) Z CR: region defined using $Z \rightarrow II + \text{low MET}$ events and Boost (VBF) selection
- Used to get normalisation in signal regions

The JER/JES fit problems for $m^{MMC} < 100$ GeV

Unblinded!

- Results from fit in a side band region (Z peak)
- Strong constraints for all JER and JES NPs
- Comes from acceptance effects (cuts on $E_{\rm T}^{\rm miss}$ and jet $p_{\rm T}$) as well as directly from the MMC calculation

JES_EffectiveNF JES_EffectiveNP

JES_EffectiveNP JES_EffectiveNP JES_EffectiveNP

JES EffectiveNP

JES_EtaInter_Mode JES_EtaInter_NonClosure

> JES_EtaInter_Sta JES_Flavor_Comp JES_Flavor_Resp

JES_PU_OffsetMu JES_PU_OffsetNPV JES_PU_PtTern

JES_PU_Rhi JES PunchThrough

Understanding the JER effect on MMC

- Shift in $E_{\rm T}^{\rm miss}$ and $p_{\rm T,jet_0}$ from JER variation translates directly into shift in $m^{\rm MMC}$
 - Shift of the Z peak (high stat region) is causing NP constraint

Future improvement: MET significance

• MMC vs MET Sign plots

Sample	No MET Sgn cut	$MET\ Sgn > 2$	Eff. (%)
ZII	244.08 ± 35.10	138.77 ± 31.67	57
Ztt	7861.29 ± 71.91	7453.08 ± 70.02	95
ggH	131.97 ± 2.14	125.63 ± 2.07	95

• Reduction of 40 % of $Z \rightarrow II$ background in the blinded region, while no impact on the signal A. De Maria 14 / 15

- Analysis in ongoing to perform cross-section measurement for $H \to \tau \tau$ in Run 2 using 2015+2016 dataset
- Precision measurements like Higgs differential cross-section and Higgs decay properties will follow after having established the cross section measurement

Thanks For Your Attention

Backup

Run 1 coupling measurement results

- Run1 paper: JHEP04(2015)117
- Split in VBF and Boosted categories to enrich VBF and ggH topologies, respectively
- Analysis used both BDT and cut-based (CB) approach
- Focus on BDT result due to better performance
 - Observed (Expected) significance: 4.5 (3.4) σ

Fake Factor calculation

- Assumptions:
 - All background processed (except QCD) can be described using W fake-factors
 - 2015 and 2016 datasets can be combined
 - Fake-factors calculated in different CRs can be used in SR

• pure MC fake validation studies have also been performed as further cross-check

Systematic errors

- Systematics are coming from different used object:
 - muons: identification, reconstruction, tracks association
 - electrons: identification, detector effects (temperature, etc.)
 - taus: energy scale, identification
 - jets: energy scale, b-tagging, resolution
 - MET: resolution, energy scale
- Both kinematic and weight systematics are taken into account for the final fit
- In total more than 150 systematic variation

Elec Eff. ID syst. for $Z \rightarrow \tau \tau$ process

Tau Eff. ID syst. for $Z \rightarrow \tau \tau$ process