

Identification of hadronically decaying tau leptons

28.11.2017 **Speaker: Olena Hlushchenko**

Introduction

Motivation for measurements:

- Beyond the Standard Model" new physics searches:
 - $\rightarrow Z' \rightarrow \tau \tau, W' \rightarrow \tau \nu$

 \rightarrow SUSY searches with stau's

 \rightarrow Lepton flavor violation, as $Z \rightarrow \tau l$

- Higgs boson Yukawa couplings and CP studies
- Polarization studies in $Z \rightarrow \tau \tau$
- Any other analysis involving tau leptons

Tau lepton hadronic decay modes RWTHAACH

- It is the only lepton heavy enough (1.777 GeV) to decay into hadrons
- tau decays always involve neutrinos
 - τ_h tau hadronic modes, $\mathcal{B}r(\tau \rightarrow \tau_h) = 64.8\%$
- The main hadronic decay modes are grouped by the numbers of charged (prongs) and neutral hadrons

Reconstruction of τ jets

- A "hadrons-plus-strips" (**HPS**) algorithm is run on top of the reconstructed particle flow (PF) jets:
 - → Reassembles jets to its constituents (photons, muons, hadrons)
 - ightarrow Reconstructs the π^0 from the electrons and photons
 - → Reconstructs possible decay modes (DM)
 - The DM with highest transverse momenta and charge/strip multiplicity that pass the mass cut-window is assigned to each jet

QCD jets rejection

R_{sig}

Multijet production is a background for every analysis with hadronically decaying tau's

Jet cone

(0.5 - 0.8)

- QCD jets can be separated from the genuine tau hadronic decays by the larger hadronic activity in a predefined 'isolation cone'
- Tools to discriminate: cut- and MVA-based isolation discriminators
- **R**_{sig} cone of the tau jet (0.05 0.1)

Isolation

Sum runs inside of a so-called "isolation" cone

$$I_{\tau} = \sum p_T^{\text{charged}}(d_Z < 0.2 \,\text{cm}) + \max\left(0, \sum p_T^{\gamma} - \Delta\beta \sum p_T^{\text{charged}}(d_Z > 0.2 \,\text{cm})\right)$$
$$p_T^{\text{strip, outer}} = \sum p_T^{e/\gamma}(\Delta R > R_{\text{sig}}) < 0.10 \cdot p_T^{\tau}$$

- Isolation is sensitive to the PU
- MVA isolation on 23 input variables
 - → Tool: TMVA BDTG
 - Individual terms of cut-based isolation are included into input variables
- Different isolation cones and DM configurations are required for different analyses

Classes of discriminating variables

- Isolation sums:
 - $\rightarrow I_{\tau,ch}, I_{\tau,neut}$
- Distributions and multiplicities of particles inside/outside the cone:
 - \rightarrow photons P_T outside signal cone, number of photons in tau etc.
- Lifetime-related:
 - \rightarrow SV, flight length, flight length significance, IP, etc.

Tau quantities:

 $\rightarrow P_{T \tau}$, $|\eta_{reco,\tau}|$, DM, Gottfried-Jackson-angle, energy ratio etc.

Discriminating variables

ΠΗΔΔ

Olena Hlushchenko | RWTH

Tau ID performance in 2016

Study of the performance on 2016 data showed that some of the tau observables had a disagreement in data/mc → lower efficiency in data compared to MC

Increasing the p_T^{γ} cut seemed an option to decrease this effect

Study with an increased p_T^{γ} cut

RWTHAACHEN UNIVERSITY

A set of trainings were performed in order to find:

- a p_T^{γ} cut point
- a collection of photonvariables

that will not decrease the performance with respect to the previous trainings

 A cut of size 1 GeV seems to be the most reasonable choice

Closer look to 2017 MC trainings

Closer look to 2017 MC trainings

RWITHAACHEN UNIVERSITY

Effect of the inclusion of the GJ-angle

Conclusion

- The p_T cut on photons has been changed for the tau reconstruction to get better agreement with the data. The effect on the tau lepton reconstruction efficiency is less than 5%
- The new training was performed based on the 2017 MC which includes the upgraded pixel detector
- Performance of 2017 training shows better performance with 2017 MC
 CMS RelVal MCv2 2017
 13 TeV, 27 pileup at 25ns
- The influence of the increasing pileup and its modelling are subject to further studies

Appendix

Provided trainings

RWTHAACHEN UNIVERSITY

	2016 MC	2017 MC (v1)	Purpose
dR = 0.3, old DM	No ttH samples	No ttH samples (will be provided during MCv2 campaign)	For Htt analysis, meant for high hadr. activity, trained using only ttH and ttbar samples
dR = 0.5, old DM	Provided during production	Will be included in the future samples	Standard
dR = 0.3, new DM	Not requested	Not requested	-
dR = 0.5, new DM	Done & uploaded	Will be provided by the end of November	For boosted tau ID studies

Input variables

- $P_{T_{\tau}\tau}, |\eta_{reco,\tau}|, I_{\tau,ch}, I_{\tau,neut}, P_{T_{\tau}\tau}, P_{U corr}$
- Photons P_T outside signal cone
- Tau decay mode, SV, flight length, flight length significance
- Number of photons in tau
- Reweighting weights for tau P_T over strip $d\eta/d\varphi/dR_{sig.}/dR_{iso.}$
- E_{ecal}/E_{hcal}
- $\blacksquare IP_{XY(Z)}, sign(IP_{XY(Z)}), IP_{XY(Z)} significance$
- Including Gottfried-Jackson-angle
 - ightarrow an angle between the flight length vector and the tau momentum

MVA-based isolation

- Tool: TMVA
- Gradient Boost BDT
 - → Classification & regression
 - → 1000 trees in the forest
 - Boosting type for the trees in the forest: Gradient
 - → Learning rate for GradBoost algorithm: 0.2
 - → Use only a random subsample of all events for growing the trees in each iteration
 - \rightarrow Fraction of events to be used in each iteration: 0.5
 - → Separation criterion for node splitting: GiniIndex
 - → Number of grid points in variable range used in finding optimal cut in node splitting: 500
 - → Maximum depth of cell tree: 5

Samples preselecting & reweighting

- Preselecting requirements:
 - $\rightarrow N_{PV} \geq 1$

- $\rightarrow \left| z_{PV} z_{vtx,\tau} \right| < 0.4 \text{ [mm]}$
- \rightarrow tau's leading PF charged hadron $P_T > 1 \text{ GeV}$
- $\rightarrow \sum_{charged cand.}^{iso.cone} P_T < 10 \text{ GeV}$
- → Reconstructed DM
- Input samples are reweighted (P_T/η) in order to not to discriminate based on the phase

